Skip to main content

Primary Grey Matter Loss

  • Chapter
  • First Online:
Neuroimaging in Dementia

Abstract

Many dementias are characterised by grey matter (GM) abnormalities; these are usually, but not exclusively, atrophy. AD is the most prevalent and the prototypic cortical GM dementia. GM atrophy reflects a loss of neurons irrespective of the underlying protein defect (amyloid, tau, alpha-synuclein); atrophy may be generalised or focal, and the pattern of atrophy may be diagnostic in itself. The current chapter focuses on disorders principally affecting GM, encompassing, besides AD, the growing class of frontotemporal lobar degeneration syndromes, including FTD and PPA, CBD and PSP, as well as PD with dementia as in DLB, Huntington’s disease and many less common diseases. A special chapter is dedicated to the prion diseases that typically affect the more basal grey matter structures as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Reading

Alzheimer’s Disease

  • Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67–77

    Article  PubMed  Google Scholar 

  • Henneman WJP, Sluimer JD, Barnes J et al (2009) Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  PubMed  CAS  Google Scholar 

  • Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461:916–922

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Brooks DJ, Rossor MN et al (2010) 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9(4):363–72

    Article  PubMed  CAS  Google Scholar 

  • Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1(1):13–21

    Article  PubMed  Google Scholar 

  • Tolboom N, Yaqub M, van der Flier WM, Boellaard R, Luurtsema G, Windhorst AD, Barkhof F, Scheltens P, Lammertsma AA, van Berckel BN (2009) Detection of Alzheimer pathology in vivo using both 11C-PIB and 18F-FDDNP PET. J Nucl Med 50:191–197

    Article  PubMed  Google Scholar 

Frontotemporal Lobar Degeneration

  • Adlam AL, Patterson K, Rogers TT, Nestor PJ, Salmond CH, Acosta-Cabronero J, Hodges JR (2006) Semantic dementia and fluent primary progressive aphasia: two sides of the same coin? Brain 129(Pt 11):3066–80

    Article  PubMed  Google Scholar 

  • Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol (Berl) 114(1):5–22, Epub 2007 Jun 20

    Article  Google Scholar 

  • Chan D, Fox NC, Scahill RI, Crum WR, Whitwell JL, Leschziner G, Rossor AM, Stevens JM, Cipolotti L, Rossor MN (2001) Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Ann Neurol 49(4):433–42

    Article  PubMed  CAS  Google Scholar 

  • Gorno-Tempini ML, Dronkers NF, Rankin KP et al (2004) Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 55(3):335–46

    Article  PubMed  Google Scholar 

  • Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119(1):1–4

    Article  PubMed  Google Scholar 

  • McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ, Work Group on Frontotemporal Dementia and Pick’s Disease (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 58(11):1803–9

    Article  PubMed  CAS  Google Scholar 

  • Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51(6):1546–54

    Article  PubMed  CAS  Google Scholar 

  • Rohrer JD, Guerreiro R, Vandrovcova J et al (2009) The heritability and genetics of frontotemporal lobar degeneration. Neurology 73(18):1451–6

    Article  PubMed  CAS  Google Scholar 

  • Rascovsky K, Hodges JR, Kipps CM et al (2007) Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer Dis Assoc Disord 21(4):S14–8

    Article  PubMed  Google Scholar 

Dementia with Lewy Bodies and Parkinson’s Disease Dementia

  • Aarsland D, Ballard CG, Halliday G (2004) Are Parkinson’s disease with dementia and dementia with Lewy bodies the same entity? J Geriatr Psychiatry Neurol 17(3):137–145

    Article  PubMed  Google Scholar 

  • McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65:1863–1872

    Article  PubMed  CAS  Google Scholar 

  • McKeith I, O’Brien J, Walker Z et al (2007) Sensitivity and specificity of dopamine transporter imaging with I-123-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 6(4):305–313

    Article  PubMed  Google Scholar 

  • O’Brien JT, Paling S, Barber R, Williams ED, Ballard C, McKeith IG, Gholkar A, Crum WR, Rossor MN, Fox NC (2001) Progressive brain atrophy on serial MRI in dementia with Lewy bodies, AD, and vascular dementia. Neurology 56(10):1386–1388

    Article  PubMed  Google Scholar 

  • Watson R, Blamire AM, O’Brien JT (2009) Magnetic resonance imaging in lewy body dementias. Dement Geriatr Cogn Disord 28(6):493–506

    Article  PubMed  Google Scholar 

  • Whitwell JL, Weigand SD, Shiung MM et al (2007) Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer’s disease. Brain 130:708–719

    Article  PubMed  Google Scholar 

Progressive Supranuclear Palsy (PSP)

  • Williams DR (2005) Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain 128(6):1247–1258

    Article  PubMed  Google Scholar 

  • Schrag A (2000) Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 54(3):697–702

    Article  PubMed  CAS  Google Scholar 

  • Oba H (2005) New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology 64(12):2050–2055

    Article  PubMed  CAS  Google Scholar 

  • Litvan I, Agid Y, Calne D et al (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47:1–9

    Article  PubMed  CAS  Google Scholar 

Multiple System Atrophy (MSA)

  • Ozawa T (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127:2657–2671

    Article  PubMed  Google Scholar 

  • Watanabe H (2002) Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain 125:1070–1083

    Article  PubMed  Google Scholar 

  • Seppi K (2005) How to diagnose MSA early: the role of magnetic resonance imaging18. J Neural Transm 112:1625–1634

    Article  PubMed  CAS  Google Scholar 

Huntington’s Disease

  • Aylward EH, Sparks BF, Field KM et al (2004) Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 63:66–72

    Article  PubMed  CAS  Google Scholar 

  • Bates G, Harper PS et al (eds) (2002) Huntington’s disease. Oxford University Press, New York

    Google Scholar 

  • Feigin A, Tang C, Ma Y et al (2007) Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain 130:2858–67

    Article  PubMed  CAS  Google Scholar 

  • Paulsen JS, Zimbelman JL, Hinton SC et al (2004) fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s Disease. AJNR Am J Neuroradiol 25:1715–1721

    PubMed  Google Scholar 

  • Rosas HD, Feigin AS et al (2004) Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington’s disease. NeuroRx 1(2):263–72

    Article  PubMed  CAS  Google Scholar 

  • Wild EJ, Tabrizi SJ (2007) Huntington’s disease phenocopy syndromes. Curr Opin Neurol 20(6):681–7

    Article  PubMed  Google Scholar 

Metal Metabolism Disorders

  • http://www.nbiadisorders.org/

  • Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KH, Gitschier J (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40

    Article  PubMed  CAS  Google Scholar 

  • van Wassenaer-van Hall HN, van den Heuvel AG, Algra A, Hoogenraad TU, Mali WP (1996) Wilson disease: findings at MR imaging and CT of the brain with clinical correlation. Radiology 198(2):531–6

    PubMed  Google Scholar 

  • Prashanth LK, Sinha S, Taly AB, Vasudev MK (2010) Do MRI features distinguish Wilson’s disease from other early onset extrapyramidal disorders? An analysis of 100 cases. Mov Disord 25(6):672–8

    Article  PubMed  CAS  Google Scholar 

Dentatorubral-Pallidoluysian Atrophy

  • Koide R, Onodera O, Ikeudu T et al (1997) Atrophy of the cerebellum and brain stem in dentatorubral-pallidoluysian atrophy: influence of GAG repeat size on MR findings. Neurology 49:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Tomiyasu H, Yoshii F, Ohnuki I, Ikeda JE, Shinohara Y (1998) The brainstem and thalamic lesions in dentatorubral-pallidoluysian atrophy: an MRI study. Neurology 50:1887–1890

    Article  PubMed  CAS  Google Scholar 

Prion-Linked Dementias

  • Collie DA, Sellar RJ, Zeidler M, Colchester AC, Knight R, Will RG (2001) MRI of Creutzfeldt-Jakob disease: imaging features and recommended MRI protocol. Clin Radiol 56(9):726–39

    Article  PubMed  CAS  Google Scholar 

  • Hyare H, Thornton J, Stevens J et al (2010) High-b-value diffusion MR imaging and basal nuclei apparent diffusion coefficient measurements in variant and sporadic Creutzfeldt-Jakob disease. AJNR Am J Neuroradiol 31:521–6

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth JD, Hill AF, Beck JA, Collinge J (2003) Molecular and clinical classification of human prion disease. Br Med Bull 66:241–54

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane RG, Wroe SJ, Collinge J, Yousry TA, Jäger HR (2007) Neuroimaging findings in human prion disease. J Neurol Neurosurg Psychiatry 78:664–70

    Article  PubMed  CAS  Google Scholar 

  • Tschampa HJ et al (2007) Radiological assessment of CJD. Eur Radiol 17:1200–11

    Article  PubMed  Google Scholar 

  • Meissner B, Kallenberg K, Sanchez-Juan P et al (2009) MRI lesion profiles in sporadic Creutzfeldt-Jakob disease. Neurology 72:1994–2001

    Article  PubMed  CAS  Google Scholar 

  • Ukisu R, Kushihashi T, Tanaka E, Baba M, Usui N, Fujisawa H, Takenaka H (2006) Diffusion-weighted MR imaging of early-stage Creutzfeldt-Jakob disease: typical and atypical manifestations. Radiographics 26(Suppl 1):S191–204

    Article  PubMed  Google Scholar 

Recreational Drugs and Alcohol

  • Bartsch AJ, Homola G, Biller A, Smith SM, Weijers HG, Wiesbeck GA, Jenkinson M, De Stefano N, Solymosi L, Bendszus M (2007) Manifestations of early brain recovery associated with abstinence from alcoholism. Brain 130:36–47

    Article  PubMed  Google Scholar 

  • Brody AL, Mandelkern MA, Jarvik ME, Lee GS, Smith EC, Huang JC et al (2004) Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biol Psychiatry 55(1):77–84

    Article  PubMed  Google Scholar 

  • Ernst M, Matochik JA, Heishman SJ, Van Horn JD, Jons PH, Henningfield JE et al (2001) Effect of nicotine on brain activation during performance of a working memory task. Proc Natl Acad Sci USA 98(8):4728–4733

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Logan J, Wang GJ, Volkow ND (2003) Monoamine oxidase and cigarette smoking. Neurotoxicology 24(1):75–82

    Article  PubMed  CAS  Google Scholar 

  • Geibprasert S, Gallucci M, Krings T (2009) Alcohol-induced changes in the brain as assessed by MRI and CT. Eur Radiol 20(6):1492–1501, Epub ahead of print

    Article  PubMed  Google Scholar 

  • Lingford-Hughes A (2005) Human brain imaging and substance abuse. Curr Opin Pharmacol 42(1):42–6, Review

    Article  Google Scholar 

  • McClernon FJ (2009) Neuroimaging of Nicotine Dependence: key findings and application to the study of smoking-mental illness comorbidity. J Dual Diagn 2:168–178

    Article  Google Scholar 

  • Mechtcheriakov S, Brenneis C, Egger K, Koppelstaetter F, Schocke M, Marksteiner JA (2007) Widespread distinct pattern of cerebral atrophy in patients with alcohol addiction revealed by voxel-based morphometry. J Neurol Neurosurg Psychiatry 78:610–614

    Article  PubMed  Google Scholar 

  • Mukhin AG, Kimes AS, Chefer SI, Matochik JA, Contoreggi CS, Horti AG et al (2008) Greater nicotinic acetylcholine receptor density in smokers than in nonsmokers: a PET study with 2–18F-FA-85380. J Nucl Med 49(10):1628–1635

    Article  PubMed  Google Scholar 

  • Yücel M, Solowij N, Respondek C, Whittle S, Fornito A, Pantelis C, Lubman DI (2008) Regional brain abnormalities associated with long-term heavy cannabis use. Arch Gen Psychiatry 65(6):694–701

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Barkhof .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barkhof, F., Fox, N.C., Bastos-Leite, A.J., Scheltens, P. (2011). Primary Grey Matter Loss. In: Neuroimaging in Dementia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00818-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00818-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00817-7

  • Online ISBN: 978-3-642-00818-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics