Skip to main content

Postimpact Deformation Due to Sediment Loading: The Mjølnir Paradigm

  • Chapter
  • First Online:
The Mjølnir Impact Event and its Consequences

Part of the book series: Impact Studies ((IMPACTSTUD))

  • 576 Accesses

Abstract

Although protective at initial stages, extensive burial and associated processes, such as mechanical- and chemical-compaction, and diagenesis, may eventually lead to considerable changes in the original crater structure and morphology. Extensive postimpact modifications may obscure many marine impact craters formed in sedimentary, water-covered targets. The same postimpact processes may result in alterations in typical/expected geophysical signatures at such structures. The postimpact structural and morphological crater modification is, generally, an overlooked process because planetary research of impact structures (where postimpact sediment loading is mostly absent) dominated the impact-related research until recently. In addition, the terrestrial impact record is dominated by crystalline-target impacts on land (e.g., Melosh 1989; Ormö and Lindström 2000; Dypvik et al. 2004a; Turtle et al. 2005). Furthermore, postimpact modifications are difficult to quantify if an extensive and dense geophysical dataset of seismic reflection profiles and potential field data is not available, which is most commonly the case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artemieva NA, Karp T, Milkereit B (2004) Investigating the Lake Bosumtwi impact structure: insight from numerical modelling. Geochem Geophys Geosyst 5:1–20

    Article  Google Scholar 

  • Arz JA, Alegret L, Arenillas I (2004) Foraminiferal biostratigraphy and paleoenvironment reconstruction at Yaxcopoil-1 drill hole, Chicxulub crater, Yucatan Peninsula. Meteorit Planet Sci 39:1009–1111

    Article  Google Scholar 

  • Bell C, Morgan JV, Hampson GJ, Trudgill B (2004) Stratigraphic and sedimentological observations from seismic data across the Chicxulub impact basin. Meteorit Planet Sci 39:1089–1098

    Article  Google Scholar 

  • Brittan J, Morgan JV, Warner MR, Marin L (1999) Nearsurface seismic expression of the Chicxulub impact crater. In: Dressler BO, Sharpton VL (eds) Large meteorite impacts and planetary evolution II. Geological Society of America Special Paper 339, Boulder, pp 281–290

    Google Scholar 

  • Carpenter BN, Carlson R (1997) The Ames meteorite-impact crater. Oklahoma Geol Surv Circ 100:104–119

    Google Scholar 

  • Christeson GL, Buffler RT, Nakamura Y (1999) Upper crustal structure of the Chicxulub impact crater from wide-angle ocean bottom seismograph data. In: Dressler BO, Sharpton VL (eds) Large meteorite impacts and planetary evolution II. Geological Society of America Spesial Paper 339, Boulder, pp 291–298

    Chapter  Google Scholar 

  • Christeson GL, Nakamura Y, Buffler RT, Morgan JV, Warner M (2001) Deep crustal structure of the Chicxulub impact crater. J Geophys Res 106:21751–21769

    Article  Google Scholar 

  • Cintala MJ, Grieve RAF (1994) The effects of differential scaling of impact melt and crater dimensions on lunar and terrestrial craters: Some brief examples. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geological Society of America Special Paper 293, Boulder, pp 51–59

    Google Scholar 

  • Collins GS, Wünnemann K (2005) How big was the Chesapeake Bay impact? Insight from numerical modeling. Geology 33:925–928

    Article  Google Scholar 

  • Coney L, Gibson RL, Reimold WU, Koeberl C (2007a) Lithostratigraphic and petrographic analysis of ICDP drill core LB-07A, Bosumtwi impact structure, Ghana. Meteorit Planet Sci 42:569–589

    Article  Google Scholar 

  • Croft SK (1985) The scaling of complex craters. Proc 15th Lunar Planet Sci Conf Part 2 J Geophys Res 90:C828–C842

    Article  Google Scholar 

  • Dimakis P, Braathen BI, Faleide JI, Elverhøi A, Gudlaugsson ST (1998) Cenozoic erosion and the preglacial uplift of the Svalbard–Barents Sea region. Tectonophysics 300:311–327

    Article  Google Scholar 

  • Dypvik H, Burchell MJ, Claeys P (2004a) Impacts into marine and icy environments. In: Dypvik H, Burchell M, Claeys P (eds) Cratering in marine environments and on ice. Springer, Berlin-Heidelberg, pp 1–20

    Chapter  Google Scholar 

  • Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) The Mjølnir structure – an impact crater in the Barents Sea. Geology 24:779–782

    Article  Google Scholar 

  • Faleide JI, Tsikalas F, Breivik AJ, Mjelde R, Ritzmann O, Engen Ø, Wilson J, Eldholm O (2008) Structure and evolution of the continental margin off Norway and the Barents Sea. In: Gee D, Ladenberger A (eds) Nordic geoscience and 33rd IGC 2008, Episodes, Special Issue 31:82–91

    Google Scholar 

  • Faleide JI, Vågnes E, Gudlaugsson ST (1993) Late Mesozoic-Cenozoic evolution of the southwestern Barents Sea in a rift shear tectonic setting. Mar Pet Geol 10:186–214

    Article  Google Scholar 

  • Fjeldskaar W, ter Voorde M, Johansen H, Christiansson P, Faleide JI, Cloetingh SAPL (2004) Numerical simulation of rifting in the northern Viking Graben; the mutual effect of modelling parameters. Tectonophysics 382:189–212

    Article  Google Scholar 

  • Gabrielsen RH, Færseth RB, Jensen LN, Kalheim JE, Riis F (1990) Structural elements of the Norwegian Continental Shelf. Part I: The Barents Sea Region. Norwegian Pet Directorate Bull 6:33

    Google Scholar 

  • Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics 39:770–780

    Article  Google Scholar 

  • Gohn GS, Koeberl C, Miller KG, Reimold WU, Cockell CS, Horton JW, Sanford WE, Voytek MA (2006) Chesapeake Bay impact structure drilled. Eos Trans Am Geophys Union 87:349, 355

    Article  Google Scholar 

  • Gohn GS, Koeberl C, Miller KG, Reimold WU, Browning JV, Cockell CS, Horton JW Jr, Kenkmann T, Kulpecz AA, Powars DS, Sanford WE, Voytek MA (2008). Deep drilling into the Chesapeake Bay impact structure. Science 320:1740–1745

    Article  Google Scholar 

  • Grieve RAF, Pesonen LJ (1996) Terrestrial impact craters: their spatial and temporal distribution and impacting bodies. Earth Moon Planet 72:357–376

    Article  Google Scholar 

  • Grieve RAF, Therriault A (2000) Vredefort, Sudbury, Chicxulub: Three of a kind? Annu Rev Earth Planet Sci 28:305–338

    Article  Google Scholar 

  • Hartung JB, Anderson RR (1996) A brief history on investigations of the Manson impact structure. In: Koeberl C, Anderson RR (eds) The Manson impact structure, Iowa: Anatomy of an impact crater. Geological Society of America Special Paper 302, Boulder, pp 31–43

    Chapter  Google Scholar 

  • Hayden T, Kominz M, Powars DS, Edwards LE, Miller KG, Browning JV, Kulpecz AA (2008) Impact effects and regional tectonic insights: Backstripping the Chesapeake Bay impact structure. Geology 36:327–330

    Article  Google Scholar 

  • Hildebrand AR, Pilkington M, Ortiz-Aleman C, Chavez R, Urrutia-Fucugauchi J, Connors M, Graniel-Castro E, Camara-Zi A, Halpenny J, Niehaus D (1998) Mapping Chicxulub crater structure with gravity and seismic reflection data. In: Grady MM, Hutchison R, McCall GJH, Rotherby DA (eds) Meteorites: flux with time and impact effects. Geological Society of London Special Publication 140, London, pp 155–176

    Google Scholar 

  • Horton JW Jr, Powars DS, Gohn GS (2005a) Studies of the Chesapeake Bay Impact Structure – The USGS-NASA Langley corehole, Hampton, Virginia, and related coreholes and geophysical surveys. US Geological Survey. USGS Professional Paper 1688, Reston, Virginia

    Book  Google Scholar 

  • Jansa LF (1993) Cometary impacts into ocean: their recognition and the threshold constraint for biological extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 104:271–286

    Article  Google Scholar 

  • Jansa LF, Pe-Piper G, Robertson BP, Friedenreich O (1989) Montagnais: A submarine impact structure on the Scotian shelf, eastern Canada. Geol Soc Am Bull 101:450–463

    Article  Google Scholar 

  • Karp T, Milkereit B, Janle P, Danuor SK, Pohl J, Berckhemer H, Scholz CA (2002) Seismic investigation of the Lake Bosumtwi impact crater: preliminary results. Planet Space Sci 50:735–743

    Article  Google Scholar 

  • Kenkmann T, Wittmann A, Scherler D (2004) Structure and impact indicators of the Cretaceous sequence of the ICDP drill core Yaxcopoil-1, Chicxulub impact crater, Mexico. Meteorit Planet Sci 39:1069–1088

    Article  Google Scholar 

  • Koeberl C, Milkereit B, Overpeck JT, Scholz CA, Amoako PYO, Boamah D, Danuor S, Karp T, Kueck J, Hecky RE, King JW, Peck JA (2007a) An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project-An overview. Meteorit Planet Sci 42:483–511

    Article  Google Scholar 

  • Mackenzie GD, Maguire PKH, Denton P, Morgan JV, Warner M (2001) Shallow seismic velocity structure of the Chicxulub impact crater from modelling of Rg dispersion using a genetic algorithm. Tectonophysics 338:97–112

    Article  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press & Clarendon Press, Oxford, p 245

    Google Scholar 

  • Merrill RB, Schultz PH (1981) Proceedings of the conference on multiring basins; formation and evolution. Pergamon Press, New York, p 289

    Google Scholar 

  • Milkereit B, Green A, Wu J, White D, Adams E (1994) Integrated seismic and borehole geophysical study of the Sudbury igneous complex. Geophys Res Lett 21:931–934

    Article  Google Scholar 

  • Morgan JV, Christeson GL, Zelt CA (2002a) Testing the resolution tomogram across the Chicxulub crater. Tectonophysics 335:215–226

    Article  Google Scholar 

  • Morgan JV, Warner MR (1999) The third dimension of a multiring impact basin. Geology 26:407–410

    Article  Google Scholar 

  • Morgan JV, Warner MR, Chicxulub working group (1997) Size and morphology of the Chicxulub impact crater. Nature 390:472–476

    Article  Google Scholar 

  • Morgan JV, Warner MR, Collins GS, Melosh HJ, Christeson GL (2000) Peak-ring formation in large impact craters: geophysical constraints from Chicxulub. Earth Planet Sci Lett 183:347–354

    Article  Google Scholar 

  • Morgan JV, Warner MR, Grieve R (2002b) Geophysical constraints on the size and structure of the Chicxulub impact crater. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356, Boulder, pp 49–46

    Chapter  Google Scholar 

  • Naumov MV (2002) Impact generated hydrothermal systems: data from Popigai, Kara, and Puchezh-Katunki impact structures. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian shields. Springer, Berlin-Heidelberg, pp 307–321

    Google Scholar 

  • Nyland B, Jensen LN, Skagen J, Skarpnes P, Vorren TO (1992) Tertiary uplift and erosion in the Barents Sea: Magnitude, timing, and consequences. In: Structural and tectonic modeling and its application to the petroleum geology. Norwegian Pet Soc Spec Publ 1:153–162

    Google Scholar 

  • O’Keefe JD, Stewart ST, Lainhart ME, Ahrens TJ (2001b) Damage and rockvolatile mixture effects on impact crater formation. Int J Impact Eng 26:543–553

    Article  Google Scholar 

  • Ormö J, Lindström M (2000) When a cosmic impact strikes the seabed. Geol Mag 137:67–80

    Article  Google Scholar 

  • Pierazzo E, Kring DA, Melosh HJ (1998) Hydrocode simulations of the Chicxulub impact event and the production of climatically active gasses. J Geophys Res 103:28607–28626

    Article  Google Scholar 

  • Pierazzo E, Melosh HJ (1999) Hydrocode modeling of Chicxulub as an oblique impact even. Earth Planet Sci Lett 165:163–176

    Article  Google Scholar 

  • Pilkington M, Grieve RAF (1992) The geophysical signature of terrestrial impact craters. Rev Geophys 30:161–181

    Article  Google Scholar 

  • Pilkington M, Hildebrand A, Ortiz-Aleman C (1994) Gravity and magnetic field modelling and structure of the Chicxulub crater, Mexico. J Geophys Res 99:13147–13162

    Article  Google Scholar 

  • Pilkington M, Jansa LF, Grieve RAF (1995) Geophysical studies of the Montagnais impact crater, Canada. Meteoritics 30:446–450

    Article  Google Scholar 

  • Poag CW (1996) Structural outer rim of Chesapeake Bay impact crater: Seismic and borehole evidence. Meteorit Planet Sci 31:218–226

    Article  Google Scholar 

  • Poag CW, Koeberl C, Reimold WU (2004) The Chesapeake Bay crater: Geology and geophysics of a Late Eocene submarine impact structure. Springer, Berlin-Heidelberg, p 522

    Book  Google Scholar 

  • Poag CW, Powars DS, Poppe LJ, Mixon RB (1994) Meteoroid mayhem in the Ole Virginny: source of the North American tektite strewn field. Geology 22:691–694

    Article  Google Scholar 

  • Popov Y, Romushkevich R, Bayuk I, Korobkov D, Mayr S, Burkhardt H, Wilhelm H (2004) Physical properties of the rocks from the upper part of the Yaxcopoil-1 drill hole, Chicxulub crater. Meteorit Planet Sci 39:799–812

    Article  Google Scholar 

  • Powars DS, Bruce TS (1999) The effects of the Chesapeake Bay impact crater on the geologic framework and the correlation of hydrogeologic units of southeastern Virginia, south of the James River. US Geological Survey. US Geological Survey Professional Paper 1612, Reston, p 82

    Google Scholar 

  • Scholz CA, Karp T, Brooks KM, Milkereit B, Amoako PYO, Arko JA (2002) Pronounced central uplift identified in the Bosumtwi impact structure, Ghana, using multichannel seismic reflection data. Geology 30:939–942

    Article  Google Scholar 

  • Scholz CA, Karp T, Lyons RP (2007) Structure and morphology of the Bosumtwi impact structure from seismic reflection data. Meteorit Planet Sci 42:549–560

    Article  Google Scholar 

  • Schultz PH, D’Hondt S (1996) Cretaceous-Tertiary Chicxulub impact angle and its consequences. Geology 24:963–967

    Article  Google Scholar 

  • Sclater JG, Christie RAF (1980) Continental stretching: An explanation of the postmid-Cretaceous subsidence of the central North Sea basin. J Geophys Res 85:3711–3739

    Article  Google Scholar 

  • Sharpton VL, Burke K, Camargo ZA, Hall SA, Lee S, Marin LE, Suarez RG, Quezada MJM, Spudis PD, Urrutia FJ (1993) Chicxulub multiring impact basin: Size and other characteristics derived from gravity analysis. Science 261:1564–1567

    Article  Google Scholar 

  • Sharpton VL, Marin LE, Carney JL, Lee S, Ryder G, Schuraytz BC, Sikora P, Spudis PD (1996) Model of the Chicxulub impact basin. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous Tertiary events and other catastrophes in Earth history. Geological Society of America Special Paper 307, Boulder, pp 55–74

    Google Scholar 

  • Shuvalov VV (2002b) Numerical modeling of the impacts into shallow sea. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian shields, impact studies. Springer, Berlin-Heidelberg, pp 323–336

    Chapter  Google Scholar 

  • Shuvalov V, Dypvik H, Tsikalas F (2002) Numerical simulations of the Mjølnir marine impact crater. J Geophys Res 107:doi 10.1029/2001JE001698

    Google Scholar 

  • Smelror M, Kelly SRA, Dypvik H, Mørk A, Nagy J, Tsikalas F (2001a) Mjølnir (Barents Sea) meteorite impact offers a Volgian-Ryazanian boundary marker. Newsl Stratigr 38:129–140

    Article  Google Scholar 

  • Snyder DB, Hobbs RW (1999a) Deep seismic reflection profiles across the Chicxulub crater. In: Dressler B, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution II. Geological Society of America Special Paper 339, Boulder, pp 269–279

    Google Scholar 

  • Snyder DB, Hobbs RW (1999b) The BIRPS Atlas II: A second decade of deep seismic reflection profiling. Lond Geol Soc Lond 3:CD-ROMs

    Google Scholar 

  • Stewart SA, Allen PJ (2002) A 20-km diameter multiringed impact structure in the North Sea. Nature 418:520–523

    Article  Google Scholar 

  • Stewart SA, Allen PJ (2005) 3D seismic reflection mapping of the Silverpit multiringed crater, North Sea. Geol Soc Am Bull 117:354–368

    Article  Google Scholar 

  • Sturkell E, Lindström M (2004) The target peneplain of the Lockne impact. Meteorit Planet Sci 39:1721–1731

    Article  Google Scholar 

  • Tsikalas F (1992) A study of seismic velocity, density and porosity in Barents Sea wells (N-Norway). Master thesis. University of Oslo, Oslo, p 169

    Google Scholar 

  • Tsikalas F (2005) Mjølnir Ccater as a result of oblique impact: Asymmetry evidence constrains impact direction and angle. In: Koeberl C, Henkel H (eds) Impact tectonism. Impact Studies. Springer, Berlin-Heidelberg, pp 285–306

    Chapter  Google Scholar 

  • Tsikalas F, Faleide JI (2004) Nearfield erosional features at the Mjølnir impact crater: The role of marine sedimentary target. In: Dypvik H, Burchell M, Claeys P (eds) Cratering in marine environments and on ice. Impact Studies. Springer, Berlin-Heidelberg, pp 39–55

    Chapter  Google Scholar 

  • Tsikalas F, Faleide JI (2007) Postimpact structural crater modification due to sediment loading: An overlooked process. Meteorit Planet Sci 42:2013–2029

    Article  Google Scholar 

  • Tsikalas F, Faleide JI, Eldholm O, Dypvik H (2002b) Seismic correlation of the Mjølnir marine impact crater to shallow boreholes. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian Shields. Impact Studies. Springer, Berlin-Heidelberg, pp 307–321

    Chapter  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Eldholm O, Faleide JI (1998c) Integrated geophysical analysis supporting the impact origin of the Mjølnir Structure, Barents Sea. Tectonophysics 289:257–280

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998a) Collapse, infilling, and postimpact deformation at the Mjølnir impact structure, Barents Sea. Geol Soc Am Bull 110:537–552

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998b) The anatomy of a buried complex impact structure: The Mjølnir Structure, Barents Sea. J Geophys Res 103:30469–30484

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (1999) Mjølnir Structure, Barents Sea: A marine impact crater laboratory. In: Dressler B, Sharpton VL (eds) Large meteorite impacts and planetary evolution II. Geological Society of America Special Paper 339, Boulder, pp 193–204

    Chapter  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (2002a) The Mjølnir marine impact crater porosity anomaly. Deep Sea Res Part II 49:1103–1120

    Article  Google Scholar 

  • Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU (2005) Impact structures: What does crater diameter mean? In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geological Society of America Special Paper 384, Boulder, pp 1–24

    Chapter  Google Scholar 

  • Ugalde H, Artemieva N, Milkereit B (2005) Magnetization on impact structures – constraints from numerical modelling and petrophysics. In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geological Society of America Special Paper 384, Boulder, pp 25–42

    Chapter  Google Scholar 

  • Ugalde H, Danuor SK, Milkereit B (2007) Integrated 3D model from gravity and petrophysical data at Lake Bosumtwi impact crater, Ghana. Meteorit Planet Sci 42:859–866

    Article  Google Scholar 

  • Vermeesch PM, Morgan JV (2004) Chicxulub central crater structure: initial results from physical property measurements and combined velocity and gravity modelling. Meteorit Planet Sci 39:1019–1034

    Article  Google Scholar 

  • von Dalwigk I, Ormö J (2001) Formation of resurge gullies at impacts at sea: The Lockne crater, Sweden. Meteorit Planet Sci 36:359–369

    Article  Google Scholar 

  • Wyllie MRJ, Gregory AR, Gardner GHF (1956) Elastic wave velocities in heterogeneous and porous media. Geophysics 21:41–70

    Article  Google Scholar 

  • Wyllie MRJ, Gregory AR, Gardner GHF (1958) An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23:459–493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippos Tsikalas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsikalas, F., Faleide, J.I. (2010). Postimpact Deformation Due to Sediment Loading: The Mjølnir Paradigm. In: Tsikalas, F., Dypvik, H., Smelror, M. (eds) The Mjølnir Impact Event and its Consequences. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88260-2_9

Download citation

Publish with us

Policies and ethics