Skip to main content

Near-field Erosional Features at the Mjølnir Impact Crater: the Role of Marine Sedimentary Target

  • Chapter
Cratering in Marine Environments and on Ice

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

Detailed seismic interpretation and structural mapping reveal evidence of near-field erosional features and their outcomes resulting from the Mjølnir impact at ~142 Ma. In particular, in the vicinity of the 40-km-diameter crater three erosive/depositional gullies are identified cutting through the rim wall faults. The gullies have meandering patterns and reach 70 m depth, 5 km width, and 25 km length. Mjølnir lacks a prominent, raised rim wall and exhibits, instead, a moderate crater rim locally tilted by 7–10° towards the crater. The Mjølnir impact into a shallow-water sedimentary basin in the Barents Sea generated a water cavity, which often collapsed, caused resurge water and material to flow back into the crater site. The back-rushing flow gave rise to gullies that are shallower and fewer in number, compared to other craters, swept out the rim wall without leaving considerable erosional scours and brought an extensive, ~50 km3, volume of surrounding sediments mixed with excavated/ejected target material back to the crater. The highly unconsolidated and largely water-saturated sediments at the shallowest target levels had very low strength and great healing capacity resulting in preservation of modulated near-field erosional features. Extensive post-impact burial of the area may have further reduced the impact-related relief at the crater vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brekke H, Sjulstad HI, Magnus C, Williams RW (2001) Sedimentary environments offshore Norway-an overview. In: Martinsen OJ, Dreyer T (eds) Sedimentary Environments Offshore Norway-Paleozoic to Recent. Norwegian Petroleum Society Special Publication 10: 7–37

    Chapter  Google Scholar 

  • Croft SK (1979) Impact craters from centimeters to megameters. Ph.D. dissertation, Los Angeles, University of California, 264 pp

    Google Scholar 

  • Croft SK (1985) The scaling of complex craters. Proceedings 15th Lunar and Planetary Science Conference, part 2: Journal of Geophysical Research 90 (supplement): C828- C842

    Google Scholar 

  • Dypvik H (1980) The sedimentology of the Janusfjellet Formation, Central Spitsbergen (Sassenfjorden and Agatdhfjellet areas). Norsk Polarinstitutt Skriftserie 172: 97–134

    Google Scholar 

  • Dypvik H, Attrep M Jr (1999) Geochemical signals of the late Jurassic, marine Mjølnir impact. Meteoritics and Planetary Science 34: 393–406

    Article  Google Scholar 

  • Dypvik H, Nagy J, Eikeland TA, Backer-Owe K, Johansen H (1991) Depositional conditions of the Bathonian to Hauterivian Janusfjellet Subgroup, Spitsbergen. Sedimentary Geology 72: 55–78

    Google Scholar 

  • Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) Mjølnir structure: An impact crater in the Barents Sea. Geology 24: 779–782

    Google Scholar 

  • Faleide JI, Solheim A, Fiedler A, Hjelstuen BO, Andersen ES, Vanneste K (1996) Late Cenozoic evolution of the western Barents Sea-Svalbard continental margin. Global and Planetary Change 12: 53–74

    Article  Google Scholar 

  • Gabrielsen RH, Færseth RB, Jensen LN, Kalheim JE, Riis F (1990) Structural elements of the Norwegian continental shelf. Part I: The Barents Sea region. Norwegian Petroleum Directorate Bulletin No. 6, 33 pp

    Google Scholar 

  • Gault DE, Sonett CP (1982) Laboratory simulation of pelagic asteroidal impact: atmospheric injection, benthic topography, and surface wave radiation field. In: Silver LT, Schultz PH (eds) Geological Implications of Impacts of Large Asteroids and Comets on Earth. Geological Society of America Special Paper 190: 69–92

    Google Scholar 

  • Gersonde R, Deutsch A (2000) New field of impact research looks to the oceans. [abs.] EOS, Transactions, Americal Geophysical Union 81, 20: 221–223

    Article  Google Scholar 

  • Grieve RAF, Pesonen LJ (1996) Terrestrial impact craters: their spatial and temporal distribution and impacting bodies. Earth, Moon and Planets 72: 357–376

    Google Scholar 

  • Gudlaugsson ST (1993) Large impact crater in the Barents Sea. Geology 21: 291–294

    Article  Google Scholar 

  • Jansa LF (1993) Cometary impacts into ocean: their recognition and the threshold constraint for biological extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 104: 271–286

    Article  Google Scholar 

  • Jansa LF, Pe-Piper G, Robertson BP, Friedenreich O (1989) Montagnais: a submarine impact structure on the Scotian shelf, eastern Canada. Geological Society of America Bulletin 101: 450–463

    Article  Google Scholar 

  • Lawver LA, Gahagan LM, Campbell DA, Brozena JM, Childers V (1999) Mid-Jurassic to Recent tectonic evolution of the Arctic region (Powerpoint animation, using the PLATES animation software) [abs.] In: Lawver LA, Brozena JM, Kovacs LC, Childers V, Compilations in the Canada Basin, Aerogeophysical Anomalies. Eos, Transactions, American Geophysical Union, Fall Meeting 1999, San Francisco, 80 (46): 1000

    Google Scholar 

  • McKinnon WB (1982) Impact into the Earth´s ocean floor: preliminary experiments, a planetary model, and possibilities for detection. In: Silver LT, Schultz PH (eds) Geological Implications of Impacts of Large Asteroids and Comets on Earth. Geological Society of America Special Paper 190: 129–142

    Google Scholar 

  • Melosh HJ (1989) Impact cratering-A geologic process. Oxford University Press, New York, 245 pp

    Google Scholar 

  • Movshovich EV, Milyavsky AE (1990) Morphology and inner structure of Kamensk and Gusev astroblemes. In: Masaitis VL (ed) Impact Craters of the Mesozoic-Cenozoic Boundary. Leningrad, Nauka: pp 110–146 (in Russian)

    Google Scholar 

  • Ormö J, Lindström M (2000) When a cosmic impact strikes the sea bed. Geological Magazine 137: 67–80

    Article  Google Scholar 

  • Poag CW (1996) Structural outer rim of Chesapeake Bay impact crater: seismic and borehole evidence. Meteoritics and Planetary Science 31: 218–226

    Article  Google Scholar 

  • Poag CW, Powars DS, Poppe LJ, Mixon RB (1994) Meteoroid mayhem in Ole Virginny: source of the North American tektite strewn field. Geology 22: 691–694

    Article  Google Scholar 

  • Puura V, Suuroja K (1992) Ordovician impact crater at Kärdla, Hiiumaa Island, Estonia. Tectonophysics 216: 143–156

    Google Scholar 

  • Richardsen G, Vorren TO, Tørudbakken BO (1993) Post-Early Cretaceous uplift and erosion in the southern Barents Sea: a discussion based on analysis of seismic interval velocities. Norsk Geologisk Tidsskrift 73: 3–20

    Google Scholar 

  • Schmidt RM, Holsapple KA (1982) Estimates of crater size for large-body impact: gravity-scaling results. In: Silver LT, Schultz PH (eds) Geological Implications of Impacts of Large Asteroids and Comets on Earth. Geological Society of America Special Paper 190: 93–102

    Google Scholar 

  • Shuvalov V (2002) Numerical modeling of the impacts into shallow sea. In: Plado J, Pesonen L (eds) Impacts in Precambrian Shields, Impact Studies, vol. 2, Springer Verlag, Berlin-Heidelberg, pp 323–336

    Chapter  Google Scholar 

  • Shuvalov V, Dypvik H, Tsikalas F (2002) Numerical simulations of the Mjølnir marine impact crater. Journal of Geophysical Research (Planets) 107 (E7)

    Google Scholar 

  • Smelror M, Kelly SRA, Dypvik H, Mørk A, Nagy J, Tsikalas F (2001) Mjølnir ( Barents Sea) meteorite impact ejecta offers a Volgian-Ryazanian boundary marker. Newsletter on Stratigraphy 38: 129–140

    Google Scholar 

  • Spudis PD (1993) The geology of multi-ring impact basins. Cambridge, United Kingdom, Cambridge University Press, 263 pp

    Book  Google Scholar 

  • Sturkell EFF, Ormö J (1997) Impact-related injections in the marine Ordovician Lockne impact structure, central Sweden. Sedimentology 44: 793–804

    Article  Google Scholar 

  • Tsikalas F (1992) A study of seimic velocity, density and porosity in Barents Sea wells (N Norway). Master’s Thesis, University of Oslo, Norway, 169 pp

    Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998a) Collapse, infilling, and post-impact deformation at the Mjølnir impact structure, Barents Sea. Geological Society of America Bulletin 110: 537–552

    Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998b) The anatomy of a buried complex impact structure: the Mjølnir Structure, Barents Sea. Journal of Geophysical Research 103: 30469–30484

    Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Eldholm O, Faleide, JI (1998c) Integrated geophysical analysis supporting the impact origin of the Mjølnir Structure, Barents Sea. Tectonophysics 289: 257–280

    Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (1999) Mjølnir Structure, Barents Sea: a marine impact crater laboratory. In: Dressler BO, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution II. Geological Society of America Special Paper 339: 193–204

    Chapter  Google Scholar 

  • Tsikalas F, Faleide JI, Eldholm O, Dypvik, H (2002a) Seismic correlation of the Mjølnir marine impact crater to shallow boreholes. In: Plado J, Pesonen L (eds) Impacts in Precambrian Shields. Impact Studies, vol. 2, Springer Verlag, Berlin-Heidelberg, pp 307–321

    Chapter  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (2002b) The Mjølnir marine impact crater porosity anomaly. Deep-Sea Research Part II 49: 1103–1120

    Article  Google Scholar 

  • von Dalwigk I, Ormö, J (2001) Formation of resurge gullies at impacts at sea: The Lockne crater, Sweden. Meteoritics and Planetary Science 36: 359–369

    Article  Google Scholar 

  • Vågnes E, Faleide JI, Gudlaugsson ST (1992) Glacial erosion and tectonic uplift in the Barents Sea. Norsk Geologisk Tidsskrift 72: 333–338

    Google Scholar 

  • Worsley D, Johansen R, Kristensen SE (1988) The Mesozoic and Cenozoic succession of Tromsøflaket. In: Dalland A, Worsley D, Ofstad K (eds) A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid-and northern Norway. Norwegian Petroleum Directorate Bulletin No. 4, pp 42–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsikalas, F., Faleide, J.I. (2004). Near-field Erosional Features at the Mjølnir Impact Crater: the Role of Marine Sedimentary Target. In: Dypvik, H., Burchell, M.J., Claeys, P. (eds) Cratering in Marine Environments and on Ice. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06423-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06423-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07376-2

  • Online ISBN: 978-3-662-06423-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics