Skip to main content

Function of Genetic Material: Progressive Insight into Antimicrobial Peptides and their Transcriptional Regulation

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 68))

  • 944 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. Embo J 24:2579–2589.

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983.

    Article  PubMed  CAS  Google Scholar 

  • Bhatti M, Veeramachaneni A, Shelef LA (2004) Factors affecting the antilisterial effects of nisin in milk. Int J Food Microbiol 97:215–219.

    Article  PubMed  CAS  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580.

    Article  PubMed  CAS  Google Scholar 

  • Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18: 1577–1591.

    Article  PubMed  CAS  Google Scholar 

  • Bowdish DM, Davidson DJ, Hancock RE (2005) A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci 6:35–51.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw J (2003) Cationic antimicrobial peptides : issues for potential clinical use. BioDrugs 17:233–240.

    Article  PubMed  CAS  Google Scholar 

  • Braff MH, Bardan A, Nizet V, Gallo RL (2005) Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol 125:9–13.

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Marien W, Terras FR, De Bolle MF, Proost P, Van Damme J, Dillen L, Claeys M, Rees SB, Vanderleyden J et al. (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31:4308–4314.

    Article  PubMed  CAS  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132: 1020–1032.

    Article  PubMed  CAS  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11.

    Article  PubMed  CAS  Google Scholar 

  • Cammue BP, De Bolle MF, Terras FR, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J Biol Chem 267:2228–2233.

    PubMed  CAS  Google Scholar 

  • Cammue BP, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC et al. (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109: 445–455.

    Article  PubMed  CAS  Google Scholar 

  • Cheigh CI, Pyun YR (2005) Nisin biosynthesis and its properties. Biotechnol Lett 27: 1641–1648.

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Xu Z, Peng L, Fang X, Yin X, Xu N, Cen P (2005) Recent advances in the research and development of human defensins. Peptides 27:931–940.

    Article  PubMed  Google Scholar 

  • Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, Platonov VG, Bulet P (2002) Antiviral and antitumor peptides from insects. Proc Natl Acad Sci USA 99: 12628–12632.

    Article  PubMed  CAS  Google Scholar 

  • Clark R, Kupper T (2005) Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 125:629–637.

    Article  PubMed  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788.

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833.

    Article  PubMed  CAS  Google Scholar 

  • De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27:1337–1347.

    Article  PubMed  Google Scholar 

  • Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466.

    Article  PubMed  CAS  Google Scholar 

  • Dorschner RA, Lopez-Garcia B, Peschel A, Kraus D, Morikawa K, Nizet V, Gallo RL (2006) The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. Faseb J 20:35–42.

    Article  PubMed  CAS  Google Scholar 

  • el Bouyoussfi M, Laus G, Verheyden P, Wyns L, Tourwe D, Van Binst G (1997) Location of the three disulfide bonds in an antimicrobial peptide from Amaranthus caudatus using mass spectrometry. J Pept Res 49:336–340.

    PubMed  Google Scholar 

  • Fliegmann J, Mithofer A, Wanner G, Ebel J (2004) An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J Biol Chem 279: 1132–1140.

    Article  PubMed  CAS  Google Scholar 

  • Ganz T (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen 8:209–217.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–491.

    Article  PubMed  CAS  Google Scholar 

  • Girardin SE, Philpott DJ, Lemaitre B (2003) Sensing microbes by diverse hosts. Workshop on pattern recognition proteins and receptors. EMBO Rep 4:932–936.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211.

    Article  PubMed  CAS  Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23:283–290.

    Article  PubMed  CAS  Google Scholar 

  • Hedengren-Olcott M, Olcott MC, Mooney DT, Ekengren S, Geller BL, Taylor BJ (2004) Differential activation of the NF-kappaB-like factors Relish and Dif in Drosophila melanogaster by fungi and Gram-positive bacteria. J Biol Chem 279:21121–21127.

    Article  PubMed  CAS  Google Scholar 

  • Huang RH, Xiang Y, Tu GZ, Zhang Y, Wang DC (2004) Solution structure of Eucommia antifungal peptide: a novel structural model distinct with a five–disulfide motif. Biochemistry 43:6005–6012.

    Article  PubMed  CAS  Google Scholar 

  • Janssens S, Beyaert R (2003) Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev 16:637–646.

    Article  PubMed  CAS  Google Scholar 

  • Jennings C, West J, Waine C, Craik D, Anderson M (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci USA 98:10614–10619.

    Article  PubMed  CAS  Google Scholar 

  • Jia S, Flores-Saaib RD, Courey AJ (2002) The Dorsal Rel homology domain plays an active role in transcriptional regulation. Mol Cell Biol 22:5089–5099.

    Article  PubMed  CAS  Google Scholar 

  • Kim T, Kim YJ (2005) Overview of innate immunity in Drosophila. J Biochem Mol Biol 38: 121–127.

    PubMed  CAS  Google Scholar 

  • Lay FT, Anderson MA (2005) Defensins—components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101.

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B (2004) The road to Toll. Nat Rev Immunol 4:521–527.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178.

    Article  PubMed  CAS  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959.

    Article  PubMed  CAS  Google Scholar 

  • McManus AM, Nielsen KJ, Marcus JP, Harrison SJ, Green JL, Manners JM, Craik DJ (1999) MiAMP1, a novel protein from Macadamia integrifolia adopts a Greek key beta-barrel fold unique amongst plant antimicrobial proteins. J Mol Biol 293:629–638.

    Article  PubMed  CAS  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465.

    Article  PubMed  CAS  Google Scholar 

  • Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717.

    Article  PubMed  CAS  Google Scholar 

  • Monk BC, Harding DR (2005) Peptide motifs for cell-surface intervention: application to anti-infective and biopharmaceutical development. BioDrugs 19:261–278.

    Article  PubMed  CAS  Google Scholar 

  • Nimchuk Z, Eulgem T, Holt BF, 3rd, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609.

    Article  PubMed  CAS  Google Scholar 

  • Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266.

    Article  PubMed  Google Scholar 

  • Ohtani S, Okada T, Yoshizumi H, Kagamiyama H (1977) Complete primary structures of two subunits of purothionin A, a lethal protein for brewer’s yeast from wheat flour. J Biochem (Tokyo) 82:753–767.

    CAS  Google Scholar 

  • Olmo N, Turnay J, Gonzalez de Buitrago G, Lopez de Silanes I, Gavilanes JG, Lizarbe MA (2001) Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem 268:2113–2123.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim JJ, Biragyn A, Kwak LW, Yang D (2003) Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 62 Suppl 2: ii17–21.

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Hahm KS (2005) Antimicrobial peptides (AMPs): peptide structure and mode of action. J Biochem Mol Biol 38:507–516.

    CAS  Google Scholar 

  • Patel SU, Osborn R, Rees S, Thornton JM (1998) Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 37:983–990.

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Zipperlen P, Kubli E (2005) Drosophila sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr Biol 15:1690–1694.

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CM, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464.

    Article  PubMed  CAS  Google Scholar 

  • Reddy KV, Yedery RD, Aranha C (2004a) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24:536–547.

    Article  PubMed  CAS  Google Scholar 

  • Reddy KV, Aranha C, Gupta SM, Yedery RD (2004b) Evaluation of antimicrobial peptide nisin as a safe vaginal contraceptive agent in rabbits: in vitro and in vivo studies. Reproduction 128:117–126.

    Article  PubMed  CAS  Google Scholar 

  • Royet J, Reichhart JM, Hoffmann JA (2005) Sensing and signaling during infection in Drosophila. Curr Opin Immunol 17:11–17.

    Article  PubMed  CAS  Google Scholar 

  • Segura A, Moreno M, Madueno F, Molina A, Garcia-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23.

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Dixon RA, Lamb C (1996) Signal transduction in plant immunity. Curr Opin Immunol 8:3–7.

    Article  PubMed  CAS  Google Scholar 

  • Sundin GW (2001) Antibiotic resistance affects plant pathogens. Science 291:2551.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Fujimoto Y, Suzuki M, Suzuki Y, Ohtake T, Saito H, Kohgo Y (2001) PI3–kinase p85alpha is a target molecule of proline-rich antimicrobial peptide to suppress proliferation of ras-transformed cells. Jpn J Cancer Res 92:959–967.

    PubMed  CAS  Google Scholar 

  • Terras FR, Schoofs HM, De Bolle MF, Van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309.

    PubMed  CAS  Google Scholar 

  • Thevissen K, Warnecke DC, Francois IE, Leipelt M, Heinz E, Ott C, Zahringer U, Thomma BP, Ferket KK, Cammue BP (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905.

    Article  PubMed  CAS  Google Scholar 

  • Tossi A (2005) Host defense peptides: roles and applications. Curr Protein Pept Sci 6:1–3.

    Article  PubMed  CAS  Google Scholar 

  • Tossi A, Sandri L (2002) Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr Pharm Des 8:743–761.

    Article  PubMed  CAS  Google Scholar 

  • Tzou P, Reichhart JM, Lemaitre B (2002) Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci USA 99:2152–2157.

    Article  PubMed  CAS  Google Scholar 

  • Uvell H, Engstrom Y (2003) Functional characterization of a novel promoter element required for an innate immune response in Drosophila. Mol Cell Biol 23:8272–8281.

    Article  PubMed  CAS  Google Scholar 

  • Van den Bergh KP, Proost P, Van Damme J, Coosemans J, Van Damme EJ, Peumans WJ (2002) Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.). FEBS Lett 530:181–185.

    Article  PubMed  Google Scholar 

  • Vila–Perello M, Tognon S, Sanchez-Vallet A, Garcia-Olmedo F, Molina A, Andreu D (2006) A minimalist design approach to antimicrobial agents based on a thionin template. J Med Chem 49:448–451.

    Article  PubMed  Google Scholar 

  • Vizioli J, Salzet M (2002) Antimicrobial peptides versus parasitic infections? Trends Parasitol 18:475–476.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32: D590–592.

    Article  PubMed  CAS  Google Scholar 

  • Wollenweber B, Porter JR, Lubberstedt T (2005) Need for multidisciplinary research towards a second green revolution. Curr Opin Plant Biol 8:337–341.

    Article  PubMed  Google Scholar 

  • Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596.

    Article  PubMed  CAS  Google Scholar 

  • Yedery RD, Reddy KV (2005) Antimicrobial peptides as microbicidal contraceptives: prophecies for prophylactics—a mini review. Eur J Contracept Reprod Health Care 10:32–42.

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395.

    Article  PubMed  CAS  Google Scholar 

  • Zemel A, Fattal DR, Ben-Shaul A (2003) Energetics and self-assembly of amphipathic peptide pores in lipid membranes. Biophys J 84:2242–2255.

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333.

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8:353–360.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hagen, S., Stahl, U. (2007). Function of Genetic Material: Progressive Insight into Antimicrobial Peptides and their Transcriptional Regulation. In: Esser, K., Löttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36832-8_2

Download citation

Publish with us

Policies and ethics