Skip to main content

Liver Vessel Parameter Estimation from Tactile Imaging Information

  • Conference paper
Medical Simulation (ISMS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3078))

Included in the following conference series:

Abstract

Realistic tissue models require accurate representations of the properties of in vivo tissue. This study examines the potential for tactile imaging to measure tissue properties and geometric information about subsurface anatomical features such as large blood vessels. Realistic finite element models of a hollow vessel in a homogenous parenchyma are constructed in order to establish a relationship between tissue parameters and tactile imaging data. A linear algorithm is developed to relate the tactile data to linearized tissue parameters. The estimation algorithm shows low errors in estimating the model parameters. A preliminary study on two porcine livers results in errors on the order of small sample size and parameter recording limitations of this preliminary study. Further work will reduce these sources of error and lead to in vivo testing with a minimally invasive tactile imaging scanhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nava, A., Mazza, E., Kleinermann, F., Avis, N.J., McClure, J.: Determination of the Mechanical Properties of Soft Human Tissues through Aspiration Experiments. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 222–229. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Bruyns, C., Ottensmeyer, M.P.: Measurements of Soft-Tissue Mechanical Properties to Support Development of a Physically Based Virtual Animal Model. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, p. 282. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Sanada, M., Ebara, M., Fukuda, H., Yoshikawa, M., Sugiura, N., Saisho, H., Yamakoshi, Y., Ohmura, K., Kobayashi, A., Kondo, F.: Clinical evaluation of sonoelasticity measurement in liver using ultrasonic imaging of internal forced low-frequency vibration. Ultrasound in Med. & Biol. 26(9), 1455–1460 (2000)

    Article  Google Scholar 

  4. Wellman, P.S.: Tactile Imaging. PhD Thesis, Division of Engineering and Applied Sciences. Cambridge, Harvard University 137 (1999)

    Google Scholar 

  5. Frei, E.H., Sollish, B.D., Yerushalmi, S., Lang, S.B., Moshitzky, M.: Instrument for viscoelastic measurement. USA Patent #4,144,877. March 20 (1979)

    Google Scholar 

  6. Cundari, M.A., West, A.I., Noble, B.D., Roberts, T.W., Widder, D.R.: Clinical tissue examination. US Patent #6,091,981, July 18 (2001)

    Google Scholar 

  7. Niemczyk, P., Sarvazyan, A.P., Fila, A., Amenta, P., Ward, W., Javidian, P., Breslauer, K., Summings, K.: Mechanical Imaging, a new technology for cancer detection. Surgical Forum 47(96), 823–825 (1996)

    Google Scholar 

  8. Sarvazyan, A.P., Skovoroda, A.R., Pyt’ev, Y.P.: Mechanical introscopy - a new modality of medical imaging for detection of breast and prostate cancer. In: Eighth IEEE Symp. Computer Based Med. Sys. (1997)

    Google Scholar 

  9. Wellman, P.S., Dalton, E.P., et al.: Tactile Imaging of Masses: First Clinical Report. Archives of Surgery 136(2), 204–208 (2001)

    Article  Google Scholar 

  10. Galea, A.M.: Mapping Tactile Imaging Information: Parameter Estimation and Deformable Registration. PhD Thesis, Division of Engineering and Applied Sciences. Cambridge, Harvard University (2004)

    Google Scholar 

  11. Carter, F.J., Frank, T.G., Davies, P.J., McLean, D., Cuschieri, A.: Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis 5, 231–236 (2001)

    Article  Google Scholar 

  12. Gray, H.: Gray’s Anatomy. Running Press (1901)

    Google Scholar 

  13. Sarvazyan, A.P.: Mechanical imaging: A new technology for medical diagnostics. International Journal of Medical Informatics 49, 195–216 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galea, A.M., Howe, R.D. (2004). Liver Vessel Parameter Estimation from Tactile Imaging Information. In: Cotin, S., Metaxas, D. (eds) Medical Simulation. ISMS 2004. Lecture Notes in Computer Science, vol 3078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25968-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25968-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22186-9

  • Online ISBN: 978-3-540-25968-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics