Skip to main content

Convex Geometry: A Travel to the Limits of Our Knowledge

  • Conference paper
  • First Online:
Geometric Methods in Physics

Part of the book series: Trends in Mathematics ((TM))

Abstract

Our knowledge and ignorance concerning the geometry of quantum states are discussed.

Mathematics Subject Classification (2010). Primary 81P16; Secondary 52A20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Birkhoff and J. von Neumann, Ann. of Math. 37, 823–843 (1936).

    Article  MathSciNet  Google Scholar 

  2. J. von Neumann,Mathematical Foundations of Quantum Mechanics, PrincetonUniv. Press (1955).

    Google Scholar 

  3. D. Finkelstein, Trans. N.Y. Acad. Sci. 25, 621–637 (1962).

    Google Scholar 

  4. V.S. Varadarajan, Geometry of Quantum Theory, Van Nostrand, vol 1 (1968), vol 2 (1970).

    Google Scholar 

  5. C. Piron, Helv. Phys. Acta, 37, 439–468 (1964); Found. Phys. 2, 287–314 (1972).

    Google Scholar 

  6. B. Mielnik, Commun. Math. Phys. 15, 1–45 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Bengtsson and K. Życzkowski. Geometry of Quantum States, An Introduction to Quantum Entanglement, Cambridge Univ. Press (2006).

    Google Scholar 

  8. B. Mielnik, Commun. Math. Phys. 37, 221–225 (1974).

    Article  MathSciNet  Google Scholar 

  9. I. Beng stson, S. Weis and K. Życzkowski, Geometry of the set of mixed quantum states: Apophatic approach, in this volume and preprint arXiv:1112.2347.

    Google Scholar 

  10. A.M. Gleason, J. Math. Mech. 6, 885–893 (1957).

    MATH  Google Scholar 

  11. I.M. Gel’fand and M.A. Naimark, Math. Sbornik 12, 197–213 (1943).

    Google Scholar 

  12. R. Haagan d D. Kastler, J. Math. Phys. 5, 848–861 (1964).

    Google Scholar 

  13. J.C.T. Pool, Commun. Math. Phys. 9, 118 (1968); 9, 212 (1968).

    Google Scholar 

  14. H. Araki, Pacific J. Math 50, 309–354 (1979).

    Article  MathSciNet  Google Scholar 

  15. R. Haag, Local Quantum Physics, Fields, Particles, Algebras, Springer-Verlag, 2nd Edition (1996).

    Google Scholar 

  16. G.W. Mackey, The mathematical foundations of quantum mechanics, Benjamin, New York (1963).

    Google Scholar 

  17. H. Primas, Chemistry, Quantum Mechanics and Reductionism, Perspectives in Theoretical Chemistry, Springer-Verlag, Berlin-Heidelberg (1983).

    Google Scholar 

  18. G. Ludwig , Z. Phys. 181, 233–260 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  19. E.B. Davies and J.T. Lewis, Commun. Math. Phys. 17, 239–260 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Penrose, Gen. Rel. Grav. 7, 171–176 (1976).

    Article  MathSciNet  Google Scholar 

  21. The Large, the Small and the Human Mind, Cambridge Univ. Press (1997).

    MATH  Google Scholar 

  22. T.W.B. Kibble and S. Randjbar-Daemi, J. Phys. A 13, 141–148 (1980).

    Google Scholar 

  23. H. Putnam, The Logic of Quantum Mechanics, Philosophical Papers, vol. 1, Cambridge Univ. Press (1975).

    MATH  Google Scholar 

  24. J. Bell and B. Hallet, Philosophy of Science 49, 355–379 (1982).

    Article  MathSciNet  Google Scholar 

  25. I. Białlynicki-Birula and J. Mycielski, Annals of Physics 100, 62 (1976).

    Google Scholar 

  26. R. Haagan d U. Bannier, Commun. Math. Phys. 60, 1–6 (1978).

    Google Scholar 

  27. B. Mielnik, Commun. Math. Phys. 101, 323–339 (1985).

    Article  MathSciNet  Google Scholar 

  28. N. Gisin, Phys. Lett. A 143,1–2 (1989).

    Article  Google Scholar 

  29. C. Simon, V. Buzek and N. Gisin, Phys. Rev. Lett. 87, 17 (2001).

    Google Scholar 

  30. D.J. Fernandez and B. Mielnik, J. Math. Phys. 35, 2083 (1994).

    Article  MathSciNet  Google Scholar 

  31. F. Delgado and B. Mielnik, Phys. Lett. A 249, 369 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Mielnik and O. Rosas-Ortiz, J. Phys. A 37, 10007–10035 (2004).

    MATH  Google Scholar 

  33. B. Mielnik and A. Ramirez, Phys. Sci. 84, 045008 (2011).

    Article  Google Scholar 

  34. D.C. Brody, A.C.T. Gustavsson and L.P. Hugston, J. Phys. A 43 082003 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Mielnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Mielnik, B. (2013). Convex Geometry: A Travel to the Limits of Our Knowledge. In: Kielanowski, P., Ali, S., Odzijewicz, A., Schlichenmaier, M., Voronov, T. (eds) Geometric Methods in Physics. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0448-6_20

Download citation

Publish with us

Policies and ethics