Skip to main content

Naphthoquinones: Atovaquone, and Other Antimalarials Targeting Mitochondrial Functions

  • Chapter
  • First Online:
Treatment and Prevention of Malaria

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Mitochondria in malaria parasites are highly divergent from their counterparts in mammalian hosts. This degree of divergence underlies the validity of mitochondrial functions as targets for antimalarial drugs. The mitochondrial electron transport chain (mtETC) at the cytochrome bc 1 complex is selectively inhibited in malaria parasites by atovaquone. Proguanil, the synergistic partner of atovaquone, appears to target an alternative pathway that generates electropotential across the inner membrane of parasite mitochondria. However, the rapid emergence of atovaquone-resistance mutations effectively negates the synergistic effect of proguanil. New antimalarials targeting the mtETC with reduced propensity for resistance development could overcome this challenge. A critical function of the mtETC is to serve mitochondrially located dihydroorotate dehydrogensae (DHODH), an enzyme of the pyrimidine biosynthesis pathway. Compounds with selective activity against parasite DHODH are under development as potential new antimalarials. Recent studies on unusual tricarboxylic acid metabolism and ATP synthase structure point to additional opportunities for investigations aimed to identify other selective inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaidya AB, Lashgari MS, Pologe LG, Morrisey J (1993) Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol Biochem Parasitol 58:33–42

    Article  PubMed  CAS  Google Scholar 

  2. Vaidya AB, Mather MW (2009) Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol 63:249–267

    Article  PubMed  CAS  Google Scholar 

  3. Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN, McFadden GI (2005) The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol 55:39–53

    Article  PubMed  CAS  Google Scholar 

  4. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  PubMed  CAS  Google Scholar 

  5. Fisher N, Bray PG, Ward SA, Biagini GA (2007) The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. Trends Parasitol 23:305–310

    Article  PubMed  CAS  Google Scholar 

  6. Crofts AR (2004) The cytochrome bc1 complex: function in the context of structure. Annu Rev Physiol 66:689–733

    Article  PubMed  CAS  Google Scholar 

  7. Cooley JW (2010) A structural model for across membrane coupling between the Qo and Qi active sites of cytochrome bc1. Biochim Biophys Acta 1797:1842–1848

    Article  PubMed  CAS  Google Scholar 

  8. Mather MW, Darrouzet E, Valkova-Valchanova M, Cooley JW, McIntosh MT, Daldal F, Vaidya AB (2005) Uncovering the molecular mode of action of the antimalarial drug atovaquone using a bacterial system. J Biol Chem 280:27458–27465

    Article  PubMed  CAS  Google Scholar 

  9. Srivastava IK, Morrisey JM, Darrouzet E, Daldal F, Vaidya AB (1999) Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol 33:704–711

    Article  PubMed  CAS  Google Scholar 

  10. Kessl JJ, Lange BB, Merbitz-Zahradnik T, Zwicker K, Hill P, Meunier B, Palsdottir H, Hunte C, Meshnick S, Trumpower BL (2003) Molecular basis for atovaquone binding to the cytochrome bc1 complex. J Biol Chem 278:31312–31318

    Article  PubMed  CAS  Google Scholar 

  11. Kessl JJ, Meshnick SR, Trumpower BL (2007) Modeling the molecular basis of atovaquone resistance in parasites and pathogenic fungi. Trends Parasitol 23:494–501

    Article  PubMed  CAS  Google Scholar 

  12. Looareesuwan S, Viravan C, Webster HK, Kyle DE, Hutchinson DB, Canfield CJ (1996) Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am J Trop Med Hyg 54:62–66

    PubMed  CAS  Google Scholar 

  13. Rathod PK, McErlean T, Lee PC (1997) Variations in frequencies of drug resistance in Plasmodium falciparum. Proc Natl Acad Sci USA 94:9389–9393

    Article  PubMed  CAS  Google Scholar 

  14. McIntosh MT, Srivastava R, Vaidya AB (1998) Divergent evolutionary constraints on mitochondrial and nuclear genomes of malaria parasites. Mol Biochem Parasitol 95:69–80

    Article  PubMed  CAS  Google Scholar 

  15. Joy DA, Feng X, Mu J, Furuya T, Chotivanich K, Krettli AU, Ho M, Wang A, White NJ, Suh E et al (2003) Early origin and recent expansion of Plasmodium falciparum. Science 300:318–321

    Article  PubMed  CAS  Google Scholar 

  16. Vaidya AB, Arasu P (1987) Tandemly arranged gene clusters of malarial parasites that are highly conserved and transcribed. Mol Biochem Parasitol 22:249–257

    Article  PubMed  CAS  Google Scholar 

  17. Preiser PR, Wilson RJ, Moore PW, McCready S, Hajibagheri MA, Blight KJ, Strath M, Williamson DH (1996) Recombination associated with replication of malarial mitochondrial DNA. EMBO J 15:684–693

    PubMed  CAS  Google Scholar 

  18. Canfield CJ, Pudney M, Gutteridge WE (1995) Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp Parasitol 80:373–381

    Article  PubMed  CAS  Google Scholar 

  19. Carrington HC, Crowther AF, Davey DG, Levi AA, Rose FL (1951) A metabolite of “Paludrine” with high antimalarial activity. Nature 168:1080

    Article  PubMed  CAS  Google Scholar 

  20. Crowther AF, Levi AA (1953) Proguanil – the isolation of a metabolite with high antimalarial activity. Br J Pharmacol 8:93–97

    CAS  Google Scholar 

  21. Looareesuwan S, Chulay JD, Canfield CJ, Hutchinson DB (1999) Malarone (atovaquone and proguanil hydrochloride): a review of its clinical development for treatment of malaria. Malarone Clinical Trials Study Group. Am J Trop Med Hyg 60:533–541

    PubMed  CAS  Google Scholar 

  22. Fivelman QL, Butcher GA, Adagu IS, Warhurst DC, Pasvol G (2002) Malarone treatment failure and in vitro confirmation of resistance of Plasmodium falciparum isolate from Lagos, Nigeria. Malar J 1:1

    Article  PubMed  Google Scholar 

  23. Kuhn S, Gill MJ, Kain KC (2005) Emergence of atovaquone-proguanil resistance during treatment of Plasmodium falciparum malaria acquired by a non-immune north American traveller to west Africa. Am J Trop Med Hyg 72:407–409

    PubMed  Google Scholar 

  24. Krudsood S, Patel SN, Tangpukdee N, Thanachartwet W, Leowattana W, Pornpininworakij K, Boggild AK, Looareesuwan S, Kain KC (2007) Efficacy of atovaquone-proguanil for treatment of acute multidrug-resistant Plasmodium falciparum malaria in Thailand. Am J Trop Med Hyg 76:655–658

    PubMed  CAS  Google Scholar 

  25. Srivastava IK, Rottenberg H, Vaidya AB (1997) Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem 272:3961–3966

    Article  PubMed  CAS  Google Scholar 

  26. Srivastava IK, Vaidya AB (1999) A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob Agents Chemother 43:1334–1339

    PubMed  CAS  Google Scholar 

  27. Nyakeriga AM, Perlmann H, Hagstedt M, Berzins K, Troye-Blomberg M, Zhivotovsky B, Perlmann P, Grandien A (2006) Drug-induced death of the asexual blood stages of Plasmodium falciparum occurs without typical signs of apoptosis. Microbes Infect 8:1560–1568

    Article  PubMed  CAS  Google Scholar 

  28. Painter HJ, Morrisey JM, Vaidya AB (2010) Mitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother 54:5281–5287

    Article  PubMed  CAS  Google Scholar 

  29. Nagy M, Lacroute F, Thomas D (1992) Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc Natl Acad Sci USA 89:8966–8970

    Article  PubMed  CAS  Google Scholar 

  30. Painter HJ, Morrisey JM, Mather MW, Vaidya AB (2007) Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446:88–91

    Article  PubMed  CAS  Google Scholar 

  31. Ganesan SM, Morrisey JM, Ke H, Painter HJ, Laroiya K, Phillips MA, Rathod PK, Mather MW, Vaidya AB (2011) Yeast dihydroorotate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection. Mol Biochem Parasitol 177:29–34

    Article  PubMed  CAS  Google Scholar 

  32. Phillips MA, Gujjar R, Malmquist NA, White J, El Mazouni F, Baldwin J, Rathod PK (2008) Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J Med Chem 51:3649–3653

    Article  PubMed  CAS  Google Scholar 

  33. Fidock DA, Nomura T, Wellems TE (1998) Cycloguanil and its parent compound proguanil demonstrate distinct activities against Plasmodium falciparum malaria parasites transformed with human dihydrofolate reductase. Mol Pharmacol 54:1140–1147

    PubMed  CAS  Google Scholar 

  34. Helsby NA, Ward SA, Howells RE, Breckenridge AM (1990) In vitro metabolism of the biguanide antimalarials in human liver microsomes: evidence for a role of the mephenytoin hydroxylase (P450 MP) enzyme. Br J Clin Pharmacol 30:287–291

    Article  PubMed  CAS  Google Scholar 

  35. Herrlin K, Massele AY, Jande M, Alm C, Tybring G, Abdi YA, Wennerholm A, Johansson I, Dahl ML, Bertilsson L et al (1998) Bantu Tanzanians have a decreased capacity to metabolize omeprazole and mephenytoin in relation to their CYP2C19 genotype. Clin Pharmacol Ther 64:391–401

    Article  PubMed  CAS  Google Scholar 

  36. Wanwimolruk S, Bhawan S, Coville PF, Chalcroft SC (1998) Genetic polymorphism of debrisoquine (CYP2D6) and proguanil (CYP2C19) in South Pacific Polynesian populations. Eur J Clin Pharmacol 54:431–435

    Article  PubMed  CAS  Google Scholar 

  37. Xie HG, Kim RB, Stein CM, Wilkinson GR, Wood AJ (1999) Genetic polymorphism of (S)-mephenytoin 4′-hydroxylation in populations of African descent. Br J Clin Pharmacol 48:402–408

    Article  PubMed  CAS  Google Scholar 

  38. Desta Z, Zhao X, Shin JG, Flockhart DA (2002) Clinical significance of the cytochrome P450 2 C19 genetic polymorphism. Clin Pharmacokinet 41:913–958

    Article  PubMed  CAS  Google Scholar 

  39. Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, Davis PH, Smithson DC, Connelly M, Clark J, Zhu F et al (2010) Chemical genetics of Plasmodium falciparum. Nature 465:311–315

    Article  PubMed  CAS  Google Scholar 

  40. Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera JL, Vanderwall DE, Green DV, Kumar V, Hasan S et al (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–310

    Article  PubMed  CAS  Google Scholar 

  41. Yeates CL, Batchelor JF, Capon EC, Cheesman NJ, Fry M, Hudson AT, Pudney M, Trimming H, Woolven J, Bueno JM et al (2008) Synthesis and structure-activity relationships of 4-pyridones as potential antimalarials. J Med Chem 51:2845–2852

    Article  PubMed  CAS  Google Scholar 

  42. Winter RW, Kelly JX, Smilkstein MJ, Dodean R, Hinrichs D, Riscoe MK (2008) Antimalarial quinolones: synthesis, potency, and mechanistic studies. Exp Parasitol 118:487–497

    Article  PubMed  CAS  Google Scholar 

  43. Winter R, Kelly JX, Smilkstein MJ, Hinrichs D, Koop DR, Riscoe MK (2011) Optimization of endochin-like quinolones for antimalarial activity. Exp Parasitol 127(2):545–51

    Article  PubMed  CAS  Google Scholar 

  44. Winter RW, Kelly JX, Smilkstein MJ, Dodean R, Bagby GC, Rathbun RK, Levin JI, Hinrichs D, Riscoe MK (2006) Evaluation and lead optimization of anti-malarial acridones. Exp Parasitol 114:47–56

    Article  PubMed  CAS  Google Scholar 

  45. Biagini GA, Fisher N, Berry N, Stocks PA, Meunier B, Williams DP, Bonar-Law R, Bray PG, Owen A, O’Neill PM et al (2008) Acridinediones: selective and potent inhibitors of the malaria parasite mitochondrial bc1 complex. Mol Pharmacol 73:1347–1355

    Article  PubMed  CAS  Google Scholar 

  46. Li W, Mo W, Shen D, Sun L, Wang J, Lu S, Gitschier JM, Zhou B (2005) Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet 1:e36

    Article  PubMed  Google Scholar 

  47. Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, Zhou B (2010) Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One 5:e9582

    Article  PubMed  Google Scholar 

  48. Phillips MA, Rathod PK (2010) Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. Infect Disord Drug Targets 10:226–239

    Article  PubMed  CAS  Google Scholar 

  49. Booker ML, Bastos CM, Kramer ML, Barker RH Jr, Skerlj R, Sidhu AB, Deng X, Celatka C, Cortese JF, Guerrero Bravo JE et al (2010) Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model. J Biol Chem 285:33054–33064

    Article  PubMed  CAS  Google Scholar 

  50. Mather MW, Henry KW, Vaidya AB (2007) Mitochondrial drug targets in apicomplexan parasites. Curr Drug Targets 8:49–60

    Article  PubMed  CAS  Google Scholar 

  51. Olszewski KL, Mather MW, Morrisey JM, Garcia BA, Vaidya AB, Rabinowitz JD, Llinas M (2010) Branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature 466:774–778

    Article  PubMed  CAS  Google Scholar 

  52. Balabaskaran Nina P, Dudkina NV, Kane LA, van Eyk JE, Boekema EJ, Mather MW, Vaidya AB (2010) Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biol 8:e1000418

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank colleagues and students in the Center for Molecular Parasitology at Drexel University College of Medicine for discussions and dynamism. I am also grateful for funding from the US National Institutes of Health (Grant number: AI028398) and Medicines for Malaria Venture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil B. Vaidya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Vaidya, A.B. (2011). Naphthoquinones: Atovaquone, and Other Antimalarials Targeting Mitochondrial Functions. In: Staines, H., Krishna, S. (eds) Treatment and Prevention of Malaria. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0346-0480-2_7

Download citation

Publish with us

Policies and ethics