Skip to main content

Theory and Applications of Biomolecular NMR Spectroscopy

  • Chapter
  • First Online:
Biomedical Applications of Biophysics

Part of the book series: Handbook of Modern Biophysics ((HBBT,volume 3))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is an experimental technique that measures the interaction between electromagnetic radiation and atomic nuclei in atoms and molecules. Atoms bonded to form molecules exist in well-defined nuclear and electronic states (stationary states) that have discrete (quantized) energies. Energy in the form of electromagnetic radiation corresponding to the difference between the energies of the quantized nuclear states can promote the system from one quantum state to another, resulting in either absorption or emission of the radiation. Thus, if the system is going from a state i with energy Ei to a state j with energy Ej, the system changes in energy by an amount ΔEij = Ej – Ei. In NMR spectroscopy, the difference in energy between the quantized nuclear states corresponds to the energy of a radiofrequency photon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Study

  • Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ. 1996. Protein NMR spectroscopy: principles and practice. New York: Academic Press.

    Google Scholar 

  • Faust B. 1995. NMR of whole body fluids. Educ Chem 32:22.

    Google Scholar 

  • Guntert P. 2008. Automated structure determination from NMR spectra. Eur Biophys J 37:1031-1035.

    Article  Google Scholar 

  • Hore PJ. 1995. Nuclear magnetic resonance. New York: Oxford UP.

    Google Scholar 

  • Mittermaier A, Kay LE. 2006. New tools provide insights in nmr studies of protein dynamics. Science 312:224-226.

    Article  CAS  PubMed  Google Scholar 

References

  1. Clore GM, Gronenborn AM. 1997. NMR structures of proteins and protein complexes beyond 20,000 M(r). Nat Struct Biol 4(1):849-853.

    CAS  PubMed  Google Scholar 

  2. Wuthrich K. 1986. NMR of proteins and nucleic acids. New York: John Wiley and Sons.

    Google Scholar 

  3. Wishart DS, Sykes BD, Richards FM. 1992. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31(24):1647-1651.

    Article  CAS  PubMed  Google Scholar 

  4. Berjanskii MV, Wishart DS. 2008. Application of the random coil index to studying protein flexibility. J Biomol NMR 40(1):31-48.

    Article  CAS  PubMed  Google Scholar 

  5. Cornilescu G, Delaglio F, Bax A. 1999. Protein backbone angle restraints from searching a database for chemi-cal shift and sequence homology. J Biomol NMR 13(3):289-302.

    Article  CAS  PubMed  Google Scholar 

  6. Schubert M, Poon DK, Wicki J, Tarling CA, Kwan EM, Nielsen JE, Withers SG, McIntosh LP. 2007. Probing electrostatic interactions along the reaction pathway of a glycoside hydrolase: histidine characterization by NMR spectroscopy. Biochemistry 46(25):7383-7395.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma D, Rajarathnam K. 2000. 13C NMR chemical shifts can predict disulfide bond formation. J Biomol NMR 18(2):165-171.

    Article  CAS  PubMed  Google Scholar 

  8. Loh SN, Kay MS, Baldwin RL. 1995. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc Natl Acad Sci USA 92(12):5446-5450.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Pagano K, Fogolari F, Corazza A, Vigilino P, Esposito G. 2007. Estimation of 3JHN-Halpha and 3JHalpha-Hbeta coupling constants from heteronuclear TOCSY spectra. J Biomol NMR 39(3):213-222.

    Article  CAS  PubMed  Google Scholar 

  10. Anglister J, Grzesiek S, Wang AC, Ren H, Klee CB, Bax A. 1994. 1H, 13C, 15N nuclear magnetic resonance backbone assignments and secondary structure of human calcineurin B. Biochemistry 33(12):3540-3547.

    Article  CAS  PubMed  Google Scholar 

  11. Nilges M, Gronenborn AM, Brunger AT, Clore GM. 1988. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints: application to crambin, potato carboxypep-tidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng 2(1):27-38.

    Article  CAS  PubMed  Google Scholar 

  12. Augustine GJ, Santamaria F, Tanaka K. 2003. Local calcium signaling in neurons. Neuron 40(2):331-346.

    Article  CAS  PubMed  Google Scholar 

  13. Berridge MJ, Lipp P, Bootman MD. 2000. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11-21.

    Article  CAS  PubMed  Google Scholar 

  14. Burgoyne RD, O’Callaghan DW, Hasdemir B, Haynes LP, Tepikin AV. 2004. Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci 27(4):203-209.

    Article  CAS  PubMed  Google Scholar 

  15. Ames JB, Tanaka T, Stryer L, Ikura M. 1996. Portrait of a myristoyl switch protein. Curr Opin Struct Biol 6(4):432-438.

    Article  CAS  PubMed  Google Scholar 

  16. Braunewell KH, Gundelfinger ED. 1999. Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res 295(1):1-12.

    Article  CAS  PubMed  Google Scholar 

  17. Burgoyne RD, Weiss JL. 2001. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353:1-12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ikura M. 1996. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 21:14-17.

    Article  CAS  PubMed  Google Scholar 

  19. Moncrief ND, Kretsinger, RH, Goodman, M. 1990. Evolution of EF-hand calcium-modulated proteins. J Mol Evol 30:522-562.

    Article  CAS  PubMed  Google Scholar 

  20. Weiss JL, Burgoyne RD. 2002. Neuronal calcium sensor proteins. In: Handbook of cell signaling, pp. 79-82. Ed R Bradshaw. San Diego: Academic Press.

    Google Scholar 

  21. Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Rrolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L. 1991. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251:915-918.

    Article  CAS  PubMed  Google Scholar 

  22. Dizhoor AM, Lowe DG, Olsevskaya EV, Laura RP, Hurley JB. 1994. The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12(6):1345-1352.

    Article  CAS  PubMed  Google Scholar 

  23. Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS. 1994. Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 13(2):395-404.

    Article  CAS  PubMed  Google Scholar 

  24. Palczewski K, Polans AS, Baehr W, Ames JB. 2000. Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays 22:337-350.

    Article  CAS  PubMed  Google Scholar 

  25. Hidaka H, Okazaki K. 1993. Neurocalcin family: a novel calcium-binding protein abundant in bovine central nervous system. Neurosci Res 16(2):73-77.

    Article  CAS  PubMed  Google Scholar 

  26. Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Koch KW, Schwemer J, Rivosecchi R, Mallart A, Galceran J, Canal I, Barbas JA, Ferrus A. 1993. Frequenin—a novel calcium-binding protein that modulates synaptic efficacy. Neuron 11:15-28.

    Article  CAS  PubMed  Google Scholar 

  27. McFerran BW, Graham ME, Burgoyne RD. 1998. Neuronal Ca2+ sensor 1, the mammalian homologue of fre-quenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 273(35):22768-22772.

    Article  CAS  PubMed  Google Scholar 

  28. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ. 2000. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403(6769):553-556.

    Article  CAS  PubMed  Google Scholar 

  29. Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR. 1999. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398(6722):80-84.

    CAS  PubMed  Google Scholar 

  30. Buxbaum JD, Choi EK, Luo Y, Lilliehook C, Crowley AC, Merriam DE, Wasco W. 1998. Calsenilin: a cal-cium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat Med 4(10):1177-1181.

    Article  CAS  PubMed  Google Scholar 

  31. Kobayashi M, Takamatsu K, Saitoh S, Miura M, Noguchi T. 1992. Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus [published erratum ap-pears in Biochem Biophys Res Commun 1993 Oct 29;196(2):1017]. Biochem Biophys Res Commun 189(1):511-517.

    Article  CAS  PubMed  Google Scholar 

  32. Kobayashi M, Takamatsu K, Saitoh S, Noguchi T. 1993. Myristoylation of hippocalcin is linked to its calcium-dependent membrane association properties. J Biol Chem 268(25):18898-18904.

    CAS  PubMed  Google Scholar 

  33. Kapp Y, Melnikov S, Shefler A, Jeromin A, Sagi R. 2003. NCS-1 and phosphatidylinositol 4-kinase regulate IgE receptor-triggered exocytosis in cultured mast cells. J Immunol 171:5320-5327.

    Article  Google Scholar 

  34. Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, Mori I, Bartfai T, Bargmann CI, Nef P. 2001. Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron 30(1):241-248.

    Article  CAS  PubMed  Google Scholar 

  35. Hendricks KB, Wang BQ, Schnieders EA, Thorner J. 1999. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nature Cell Biol 1:234-241.

    Article  CAS  PubMed  Google Scholar 

  36. Huttner IG, Strahl T, Osawa M, King DS, Ames JB, Thorner J. 2003. Molecular interactions of yeast frequenin with Pik1. J Biol Chem 278(7):4862-4874.

    Article  CAS  PubMed  Google Scholar 

  37. Hamasaki-Katagiri N, Molchanova T, Takeda K, Ames JB. 2004. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance. J Biol Chem 279(13):12744-12754.

    Article  CAS  PubMed  Google Scholar 

  38. Kawamura S. 1993. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by Smodulin. Nature 62(6423):855-857.

    Article  Google Scholar 

  39. Erickson MA, Lagnado L, Zozulya S, Neubert TA, Stryer L, Baylor DA. 1998. The effect of recombinant recoverin on the photoresponse of truncated rod photoreceptors. Proc Natl Acad Sci USA 95(11):6474-6479.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Makino CL, Dodd RL, Chen J, Burns ME, Roca A, Simon MI, Baylor DA. 2004. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. J Gen Physiol 123(6):729-741.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Calvert PD, Klenchin VA, Bownds MD. 1995. Rhodopsin kinase inhibition by recoverin. Function of recoverin myristoylation. J Biol Chem 270(41):24127-24129.

    Article  CAS  PubMed  Google Scholar 

  42. Klenchin VA, Calvert PD, Bownds MD. 1995. Inhibition of rhodopsin kinase by recoverin: further evidence for a negative feedback system in phototransduction. J Biol Chem 270(27):16147-16152.

    Article  CAS  PubMed  Google Scholar 

  43. Chen CK, Inglese J, Lefkowitz RJ, Hurley JB. 1995. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem 270(30):18060-18066.

    CAS  PubMed  Google Scholar 

  44. Polans AS, Buczylko J, Crabb J, Palczewski K. 1991. A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy. J Cell Biol 112:981-989.

    Article  CAS  PubMed  Google Scholar 

  45. Subramanian L, Polans AS. 2004. Cancer-related diseases of the eye: the role of calcium and calcium-binding proteins. Biochem Biophys Res Commun 322(4):1153-1165.

    Article  CAS  PubMed  Google Scholar 

  46. Palczewski K, Sokal I, Baehr W. 2004. Guanylate cyclase-activating proteins: structure, function, and diversity. Biochem Biophys Res Commun 322(4):1123-1130.

    Article  CAS  PubMed  Google Scholar 

  47. Semple-Rowland SL, Gorczyca WA, Buczylko J, Helekar BS, Ruiz CC, Subbaraya I, Palczewski K, Baehr W. 1996. Expression of GCAP1 and GCAP2 in the retinal degeneration (rd) mutant chicken retina. FEBS Lett 385(1):47-52.

    Article  CAS  PubMed  Google Scholar 

  48. Sokal I, Li N, Surgucheva I, Warren MJ, Payne AM, Bhattacharya SS, Baehr W, Palczewski K. 1998. GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Mol Cell 2(1):129-133.

    Article  CAS  PubMed  Google Scholar 

  49. Strahl T, Grafelmann B, Dannenberg J, Thorner J, Pongs O. 2003. Conservation of regulatory function in cal-cium-binding proteins: human frequenin (neuronal calcium sensor-1) associates productively with yeast phos-phatidylinositol 4-kinase isoform, Pik1. J Biol Chem 278(49):49589-49599.

    Article  CAS  Google Scholar 

  50. Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB. 1999. Direct involvement of phosphatidylinosi-tol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274:34294-34300.

    Article  CAS  PubMed  Google Scholar 

  51. Walch-Solimena C, Novick P. 1999. The yeast phosphatidylinositol-4-OH kinase Pik1 regulates secretion at the Golgi. Nature Cell Biol 1:523-525.

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura TY, Pountney DJ, Ozaita A, Nandi S, Ueda S, Rudy B, Coetzee WA. 2001. A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents. Proc Natl Acad Sci USA 98(22):12808-12813.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Weiss JL, Archer DA, Burgoyne RD. 2000. Neuronal Ca2+ sensor-1/frequenin functions in an autocrine path-way regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem 275(51):40082-40087.

    Article  CAS  PubMed  Google Scholar 

  54. Carrion AM, Mellstrom B, Naranjo JR. 1998. Protein kinase A-dependent derepression of the human prodynor-phin gene via differential binding to an intragenic silencer element. Mol Cell Biol 18(12):6921-6929.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Cheng HY, Pitcher GM, Laviolette SR, Whishaw IQ, Tong KI, Kockeritz LK, Wada T, Joza NA, Crackower M, Goncalves J, Sarosi I, Woodgett JR, Oliveira-dos-Santos AJ, Ikura M, van der Kooy D, Salter MW, Penninger JM. 2002. DREAM is a critical transcriptional repressor for pain modulation. Cell 108(1):31-43.

    Article  CAS  PubMed  Google Scholar 

  56. Lilliehook C, Bozdagi O, Yao J, Gomez-Ramirez M, Zaidi NF, Wasco W, Gandy S, Santucci AC, Haroutunian V, Huntley GW, Buxbaum JD. 2003. Altered Abeta formation and long-term potentiation in a calsenilin knock-out. J Neurosci 23(27):9097-9106.

    CAS  PubMed  Google Scholar 

  57. Dizhoor AM, Ericsson LH, Johnson RS, Kumar S, Olshevskaya E, Zozulya S, Neubert TA, Stryer L, Hurley JB, Walsh KA. 1992. The NH2 terminus of retinal recoverin is acylated by a small family of fatty acids. J Biol Chem 267(23):16033-16036.

    CAS  PubMed  Google Scholar 

  58. Ladant D. 1995. Calcium and membrane binding properties of bovine neurocalcin expressed in Escherichia coli. J Biol Chem 270:3179-3185.

    CAS  PubMed  Google Scholar 

  59. Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M. 1995. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376(6539):444-447.

    Article  CAS  PubMed  Google Scholar 

  60. Ames JB, Hamasaki N, Molchanova T. 2002. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state. Biochemistry 41(18):5776-5787.

    Article  CAS  PubMed  Google Scholar 

  61. Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M. 1997. Molecular mechanics of calcium-myristoyl switches. Nature 389(6647):198-202.

    CAS  PubMed  Google Scholar 

  62. Ames JB, Tanaka T, Stryer L, Ikura M. 1994. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch. Biochemistry 33(35):10743-10753.

    Article  CAS  PubMed  Google Scholar 

  63. Tanaka T, Ames JB, Kainosho M, Stryer L, Ikura M. 1998. Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy. J Biomol NMR 11(2):135-152.

    Article  CAS  PubMed  Google Scholar 

  64. Brunger AT. 1992. X-PLOR, version 3.1: a system for x-ray crystallography and NMR. New Haven: Yale UP.

    Google Scholar 

  65. Valentine KG, Mesleh MF, Opella SJ, Ikura M, Ames JB. 2003. Structure, topology, and dynamics of myristoy-lated recoverin bound to phospholipid bilayers. Biochemistry 42(21):6333-6340.

    Article  CAS  PubMed  Google Scholar 

  66. Krylov DM, Niemi GA, Dizhoor AM, Hurley JB. 1999. Mapping sites in guanylyl cyclase activating protein-1 required for regulation of photoreceptor membrane guanylyl cyclases. J Biol Chem 274(16):10833-10839.

    Article  CAS  PubMed  Google Scholar 

  67. Tachibanaki S, Nanda K, Sasaki K, Ozaki K, Kawamura S. 2000. Amino acid residues of S-modulin responsible for interaction with rhodopsin kinase. J Biol Chem 275:3313-3319.

    Article  CAS  PubMed  Google Scholar 

  68. Olshevskaya EV, Boikov S, Ermilov A, Krylov D, Hurley JB, Dizhoor AM. 1999. Mapping functional domains of the guanylate cyclase regulator protein, GCAP-2. J Biol Chem 274(16):10823-10832.

    Article  CAS  PubMed  Google Scholar 

  69. Zhou W, Qian Y, Kunjilwar K, Pfaffinger PJ, Choe S. 2004. Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Neuron 41(4):573-586.

    Article  CAS  PubMed  Google Scholar 

  70. Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB, Bax A. 1992. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256(5057):632-638.

    Article  CAS  PubMed  Google Scholar 

  71. Meador WE, Means AR, Quiocho FA. 1992. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257(5074):1251-1255.

    Article  CAS  PubMed  Google Scholar 

  72. Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA. 1995. X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell 82(3):507-522.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Ames .

Editor information

Editors and Affiliations

4.1 Electronic Supplementary material

Figure 4.4.

Amino-acid sequence alignment of human KChIP1 (Swiss-Prot accession no. Q9NZI2), mouse DREAM (Q9QXT8), bovine neurocalcin δ (P61602), human hippocalcin (Q5U068), drosophila frequenin (P37236), S. cerevisae Frq1 (Q06389), and bovine recoverin (P21457). The 29-residue EFhand motifs are highlighted in color: EF-1 (green), EF-2 (red), EF-3 (cyan), EF-4 (yellow). Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,876 KB)

Figure 4.6.

NMR-derived structures of myristoylated recoverin with 0 Ca2+ bound (A), 1 Ca2+ bound (B), and 2 Ca2+ bound (C). The first step of the mechanism involves binding of Ca2+ to EF-3, which causes minor structural changes within the EF-hand that sterically promote a 45° swiveling of the two domains, resulting in partial unclamping of the myristoyl group and dramatic rearrangement at the domain interface. The resulting altered interaction between EF-2 and EF-3 facilitates the binding of a second Ca2+ to the protein at EF-2 in the second step, which causes structural changes within the N-terminal domain that directly lead to ejection of the fatty acyl group. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,777 KB)

Figure 4.7.

Mainchain structure (A) and space-filling representation (B) of myristoylated recoverin bound to oriented lipid bilayers determined by solid-state NMR [65]. Hydrophobic residues are yellow, bound Ca2+ ions are orange, and charged residues are red and blue. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,785 KB)

Figure 4.8.

Space-filling representations of the Ca2+-bound structures of recoverin (A), frequenin (B), neurocalcin (C), and KChIP1 (D). Exposed hydrophobic residues are yellow, neutral residues are white, and charge residues are red and blue. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,838 KB)

Figure 4.9.

Ribbon diagrams illustrating intermolecular interactions for KChIP1 bound to Kv4.2 [69] (A), calmodulin bound to M13 peptide [70] (B), and calcineurin B bound to calcineurin A [72] (C). In each case, a target helix (magenta) is inserted in a groove formed by the helices of EF-1 (green) and EF-2 (red). The intermolecular interactions are mostly hydrophobic, as described in the text. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,769 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ames, J.B. (2010). Theory and Applications of Biomolecular NMR Spectroscopy. In: Jue, T. (eds) Biomedical Applications of Biophysics. Handbook of Modern Biophysics, vol 3. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-233-9_4

Download citation

Publish with us

Policies and ethics