Skip to main content
Log in

Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The relationships among 153 EF-hand (calcium-modulated) proteins of known amino acid sequence were determined using the method of maximum parsimony. These proteins can be ordered into 12 distinct subfamilies-calmodulin, troponin C, essential light chain of myosin, regulatory light chain, sarcoplasmic calcium binding protein, calpain, aequorin,Strongylocentrotus purpuratus ectodermal protein, calbindin 28 kd, parvalbumin, α-actinin, and S100/intestinal calcium-binding protein. Eight individual proteins-calcineurin B fromBos, troponin C fromAstacus, calcium vector protein fromBranchiostoma, caltractin fromChlamydomonas, cell-division-cycle 31 gene product fromSaccharomyces, 10-kd calcium-binding protein fromTetrahymena, LPS1 eight-domain protein fromLytechinus, and calcium-binding protein fromStreptomyces—are tentatively identified as unique; that is, each may be the sole representative of another subfamily. We present dendrograms showing the relationships among the subfamilies and uniques as well as dendrograms showing relationships within each subfamily.

The EF-hand proteins have been characterized from a broad range of organismal sources, and they have an enormous range of function. This is reflected in the complexity of the dendrograms. At this time we urge caution in assigning a simple scheme of gene duplications to account for the evolution of the 600 EF-hand domains of known sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken A, Klee CB, Cohen P (1984) The structure of the B subunit of calcineurin. Eur J Biochem 139:663–671

    PubMed  Google Scholar 

  • Aoki K, Imajoh S, Ohno S, Emori Y, Koike M,Kosaki G, Suzuki K (1986) Complete amino acid sequence of the large subunit of the low-Ca2+-requiring form of human Ca2+-activated neutral protease (μCANP) deduced from its cDNA sequence. FEBS Lett 205:313–317

    PubMed  Google Scholar 

  • Arimura C, Suzuki T, Yanagisawa M, Imamura M, Hamada Y, Masaki T (1988) Primary structure of chicken skeletal muscle and fibroblast α-actinins deduced from cDNA sequences. Eur J Biochem 177:649–655

    PubMed  Google Scholar 

  • Baba ML, Goodman M, Berger-Cohn J, Demaille JG, Matsuda G (1984) The early adaptive evolution of calmodulin. Mol Biol Evol 1:442–455

    PubMed  Google Scholar 

  • Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ (1985) Three-dimensional structure of calmodulin. Nature 316:37–40

    Google Scholar 

  • Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204:191–204

    PubMed  Google Scholar 

  • Barker WC, Ketcham LK, Dayhoff MO (1977) Evolutionary relationships among calcium-binding proteins. In: Wasserman RH, Corradino R, Carafoli E, Kretsinger RH, Mac-Lennan D, Siegel F (eds) Calcium-binding proteins and calcium function. North-Holland, New York, pp 73–75

    Google Scholar 

  • Baron MD, Davidson MD, Jones P, Critchley DR (1987) The sequence of chick α-actinin reveals homologies to spectrin and calmodulin. J Biol Chem 262:17623–17629

    PubMed  Google Scholar 

  • Barraclough R, Savin J, Dube SK, Rudland PS (1987) Molecular cloning and sequence of the gene for p9Ka. A cultured myoepithelial cell protein with strong homology to S-100, a calcium-binding protein. J Mol Biol 198:13–20

    PubMed  Google Scholar 

  • Barraclough R, Kimbell R, Rudland PS (1988) The identification of a normal rat gene located close to a gene for the potential myoepithelial cell calcium-binding protein, p9Ka. J Biol Chem 263:14597–14600

    PubMed  Google Scholar 

  • Barton PJR, Robert B, Cohen A, Garner I, Sassoon D, Weydert A, Buckingham ME (1988) Structure and sequence of the myosin alkali light chain gene expressed in adult cardiac atria and fetal striated muscle. J Biol Chem 263:12669–12676

    PubMed  Google Scholar 

  • Baudier J (1988) S100 proteins: structure and calcium binding properties. In: Gerday C, Gillis R, Bolis L (eds) Calcium and calcium binding proteins: molecular and functional aspects. Springer-Verlag, New York, pp 102–113

    Google Scholar 

  • Baudier J, Gerard D (1986) Ions binding to S100 proteins. II. Conformational studies and calcium-induced conformational changes in S100αα protein: the effect of acidic pH and calcium incubation on subunit exchange in S100a (αβ) proteins. J Biol Chem 261:8204–8212

    PubMed  Google Scholar 

  • Baudier J, Glasser N, Gerard D (1986) Ions binding to S100 proteins. I. Calcium- and zinc-binding properties of bovine brain S100(αα), S100a(αβ), and S100b(ββ) protein: Zn2+ regulates Ca2+ binding on S100b protein. J Biol Chem 261:8192–8203

    PubMed  Google Scholar 

  • Baum P, Furlong C, Byers B (1986) Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci USA 83:5512–5516

    PubMed  Google Scholar 

  • Bender PK, Dedman JR, Emerson CP Jr (1988) The abundance of calmodulin mRNAs is regulated in phosphorylase kinase-deficient skeletal muscle. J Biol Chem 263:9733–9737

    PubMed  Google Scholar 

  • Berchtold MW (1988) Structural organization of the human parvalbumin gene. In: Hidaka H (ed) Ca2+ protein signaling. Plenum Press, New York (in press)

    Google Scholar 

  • Berchtold MW, Heizmann CW, Wilson KJ (1982) Primary structure of parvalbumin from rat skeletal muscle. Eur J Biochem 127:381–389

    PubMed  Google Scholar 

  • Berchtold MW, Epstein P, Beaudet AL, Payne ME, Heizmann CW, Means AR (1987) Structural organization and chromosomal assignment of the parvalbumin gene. J Biol Chem 262:8696–8701

    PubMed  Google Scholar 

  • Bruggen J, Tarcsay L, Cerletti N, Odink K, Rutishauser M, Hollander G, Sorg C (1988) The molecular nature of the cystic fibrosis antigen. Nature 331:570

    PubMed  Google Scholar 

  • Calabretta B, Battini R, Kaczmarek L, de Riel JK, Baserga R (1986) Molecular cloning of the cDNA for a growth factor-inducible gene with strong homology to S-100, a calcium-binding protein. J Biol Chem 261:12628–12632

    PubMed  Google Scholar 

  • Capony J-P, Ryden L, Demaille J, Pechére J-F (1973) The primary structure of the major parvalbumin from hake muscle. Overlapping peptides obtained with chemical and enzymatic methods. The complete amino acid sequence. Eur J Biochem 32:97–108

    PubMed  Google Scholar 

  • Capony J-P, DeMaille J, Pina C, Pechére J-F (1975) The amino-acid sequence of the most acidic major parvalbumin from frog muscle. Eur J Biochem 56:215–227

    PubMed  Google Scholar 

  • Capony J-P, Pina C, Pechére J-F (1976) Parvalbumin from rabbit muscle: isolation and primary structure. Eur J Biochem 70:123–135

    PubMed  Google Scholar 

  • Carpenter CD, Bruskin AM, Hardin PE, Keast MJ, Anstrom J, Tyner AL, Brandhorst BP, Klein WH (1984) Novel proteins belonging to the troponin C superfamily are encoded by a set of mRNAs in sea urchin embryos. Cell 36:663–671

    PubMed  Google Scholar 

  • Charbonneau H, Walsh KA, McCann RO, Prendergast FG, Cormier MJ, Vanaman TC (1985) Amino acid sequence of the calcium-dependent photoprotein aequorin. Biochemistry 24: 6762–6771

    PubMed  Google Scholar 

  • Chen Q, Taljanidisz J, Sarkar S, Tao T, Gergely J (1988) Cloning, sequencing and expression of a full-length rabbit fast skeletal troponin-C cDNA. FEBS Lett 228:22–26

    PubMed  Google Scholar 

  • Chien Y-H, Dawid IB (1984) Isolation and characterization of calmodulin genes fromXenopus laevis. Mol Cell Biol 4:507–513

    PubMed  Google Scholar 

  • Coffee CJ, Bradshaw RA (1973a) Carp muscle calcium-binding protein. I. Characterization of the tryptic peptides and the complete amino acid sequence of component B. J Biol Chem 248:3305–3312

    Google Scholar 

  • Coffee CJ, Bradshaw RA (1973b) Erratum. J Biol Chem 248:6576

    Google Scholar 

  • Coffee CJ, Bradshaw RA, Kretsinger RH (1974) The coordination of calcium ions by carp muscle calcium binding proteins A, B and C. Adv Exp Med Biol 48:211–233

    PubMed  Google Scholar 

  • Collins, JH (1976a) Structure and evolution of troponin C and related proteins. In: Calcium in biological systems, Soc Exp Biol Symp XXX, Cambridge University Press, London, pp 303–334

    Google Scholar 

  • Collins JH (1976b) Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin. Nature 259:699–700

    PubMed  Google Scholar 

  • Collins JH, Greaser ML, Potter JD, Horn MJ (1977) Determination of the amino acid sequence of troponin C from rabbit skeletal muscle. J Biol Chem 252:6356–6362

    Google Scholar 

  • Collins JH, Jakes R, Kendrick-Jones J, Leszyk J, Barouch W, Theibert JL, Spiegel J, Szent-Györgyi AG (1986) Amino acid sequence of myosin essential light chain from the scallopAquipecten irradians. Biochemistry 25:7651–7656

    PubMed  Google Scholar 

  • Collins JH, Cox JA, Theibert JL (1988) Amino acid sequence of a sarcoplasmic calcium-binding protein from the sandwormNereis diversicolor. J Biol Chem 263:15378–15381

    PubMed  Google Scholar 

  • Cormier MJ (1978) Applications ofRenilla bioluminescence. Methods Enzymol 57:237–244

    Google Scholar 

  • Cox JA (1986) Isolation and characterization of a new Mr 18,000 protein with calcium vector properties in amphioxus muscle and identification of its endogenous target protein. J Biol Chem 261:13173–13178

    PubMed  Google Scholar 

  • Cox JA (1990) Calcium vector protein and sarcoplasmic calcium binding proteins from invertebrate muscle. In: Dedman JR, Smith VL (eds) Stimulus-response coupling: the role of intracellular calcium. Telford Press, West Caldwell NJ (in press)

    Google Scholar 

  • Cox JA, Bairoch A (1988) Sequence similarities in calcium-binding proteins. Nature 331:491–492

    Google Scholar 

  • Davis TN, Urdea MS, Masiarz FR, Thorner J (1986) Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell 47:423–431

    PubMed  Google Scholar 

  • Dedman JR, Jackson RL, Schreiber WE, Means AR (1978) Sequence homology of the Ca2+-dependent regulator of cyclic nucleotide phosphodiesterase from rat testis with other Ca2+-binding proteins. J Biol Chem 253:343–346

    PubMed  Google Scholar 

  • Desplan C, Heidmann O, Lillie JW, Auffray C, Thomasset M (1983a) Sequence of rat intestinal vitamin D-dependent calcium-binding protein derived from a cDNA clone: evolutionary implications. J Biol Chem 258:13502–13505

    PubMed  Google Scholar 

  • Desplan C, Thomasset M, Moukhtar M (1983b) Synthesis, molecular cloning, and restriction analysis of DNA complementary to vitamin D-dependent calcium-binding protein mRNA from rat duodenum. J Biol Chem 258:2762–2765

    PubMed  Google Scholar 

  • Donato R (1986) S-100 proteins. Cell Calcium 7:123–145

    PubMed  Google Scholar 

  • Donato R (1988) Calcium-independent, pH-regulated effects of S-100 proteins on assembly-disassembly of brain microtubule protein in vitro. J Biol Chem 263:106–110

    PubMed  Google Scholar 

  • Dorin JR, Novak M, Hill RE, Brock DJH, Secher DS, van Heyningen V (1987) A clue to the basic defect in cystic fibrosis from cloning the CF antigen gene. Nature 326:614–617

    PubMed  Google Scholar 

  • Elsayed S, Bennich H (1975) The primary structure of allergen M from cod. Scan J Immunol 4:203–208

    Google Scholar 

  • Emori Y, Kawasaki H, Imajoh S, Kawashima S, Suzuki K (1986a) Isolation and sequence analysis of cDNA clones for the small subunit of rabbit calcium-dependent protease. J Biol Chem 261:9472–9476

    PubMed  Google Scholar 

  • Emori Y, Kawasaki H, Sugihara H, Imajoh S, Kawashima S, Suzuki K (1986b) Isolation and sequence analyses of cDNA clones for the large subunits of two isozymes of rabbit calcium-dependent protease. J Biol Chem 261:9465–9471

    PubMed  Google Scholar 

  • Enfield DL, Ericsson LH, Blum HE, Fischer EH, Neurath H (1975) Amino-acid sequence of parvalbumin from rabbit skeletal muscle. Proc Natl Acad Sci USA 72:1309–1313

    PubMed  Google Scholar 

  • Epstein P, Means AR, Berchtold MW (1986) Isolation of the rat parvalbumin gene and full length cDNA. J Biol Chem 261:5886–5891

    PubMed  Google Scholar 

  • Falkenthal S, Parker VP, Mattox WW, Davidson N (1984)Drosophila melanogaster has only one myosin alkali light-chain gene which encodes a protein with considerable amino acid sequence homology to chicken myosin alkali light chains. Mol Cell Biol 4:956–965

    PubMed  Google Scholar 

  • Falkenthal S, Parker VP, Davidson N (1985) Developmental variations in the splicing patterns of transcripts from theDrosophila gene encoding myosin alkali light chain result in different carboxyl-terminal amino acid sequences. Proc Natl Acad Sci USA 82:449–453

    PubMed  Google Scholar 

  • Fano G, Angelella P, Mariggio D, Aisa MC, Giambanco I, Donato R (1989) S-100α0 protein stimulates the basal (Mg2+-activated) adenylate cyclase activity associated with skeletal muscle membranes. FEBS Lett (in press)

  • Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668

    Google Scholar 

  • Feher JJ, Fullmer CS, Fritzsch GK (1989) Comparison of the enhanced steady-state diffusion of calcium by calbindin-D 9k and calmodulin: possible importance in intestinal calcium absorption. Cell Calcium 10:189–203

    PubMed  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    PubMed  Google Scholar 

  • Ferrari S, Calabretta B, de Riel JK, Battini R, Ghezzo F, Lauret E, Griffin C, Emanuel BS, Gurrieri F, Baserga R (1987) Structural and functional analysis of a growth-related gene, the human calcyclin. J Biol Chem 262:8325–8332

    PubMed  Google Scholar 

  • Fischer R, Koller M, Flura M, Mathews S, Strehler-Page M-A, Krebs J, Penniston JT, Carafoli E, Strehler EE (1988) Multiple divergent mRNAs code for a single human calmodulin. J Biol Chem 263:17055–17062

    PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416

    Google Scholar 

  • Fitch WM, Margoliash E (1967) The construction of phylogenetic trees—a generally applicable method utilizing estimates of the mutation distance obtained from cytochrome C sequences. Science 155:279–284

    PubMed  Google Scholar 

  • Floyd EE, Gong Z, Brandhorst BP, Klein WH (1986) Calmodulin gene expression during sea urchin development: persistence of a prevalent maternal protein. Dev Biol 113:501–511

    PubMed  Google Scholar 

  • Frank G, Weeds AG (1974) The amino-acid sequence of the alkali light chains of rabbit skeletal-muscle myosin. Eur J Biochem 44:317–334

    PubMed  Google Scholar 

  • Frankenne F, Joassin L, Gerday C (1973) The amino acid sequence of the pike (Esox lucius) parvalbumin III. FEBS Lett 35:145–147

    PubMed  Google Scholar 

  • Fullmer CS, Wasserman RH (1981) The amino acid sequence of bovine intestinal calcium-binding protein. J Biol Chem 256:5669–5674

    PubMed  Google Scholar 

  • Fullmer CS, Wasserman RH (1987) Chicken intestinal 28-kilodalton calbindin-D: complete amino acid sequence and structural considerations. Proc Natl Acad Sci USA 84:4772–4776

    PubMed  Google Scholar 

  • Gahlmann R, Wade R, Gunning P, Kedes L (1988) Differential expression of slow and fast skeletal muscle troponin C. Slow skeletal muscle troponin C is expressed in human fibroblasts. J Mol Biol 201:379–391

    PubMed  Google Scholar 

  • Garfinkel LI, Periasamy M, Nadal-Ginard B (1982) Cloning and characterization of cDNA sequences corresponding to myosin light chains 1, 2, and 3, troponin-C, troponin-T, α-tropomyosin, and α-actin. J Biol Chem 257:11078–11086

    PubMed  Google Scholar 

  • Gerday C (1976) The primary structure of the parvalbumin II of pike (Esox lucius). Eur J Biochem 70:305–318

    PubMed  Google Scholar 

  • Gerday C (1988) Soluble calcium binding proteins in vertebrate and invertebrate muscles. In: Gerday C, Bolis L, Gilles R (eds) Calcium and calcium binding proteins: molecular and functional aspects. Springer-Verlag, Berlin, pp 23–39

    Google Scholar 

  • Gerday C, Collin S, Piront A (1978) Phylogenetic relationships between Cyprinidae parvalbumins. II. The amino acid sequence of the parvalbumin V of chub (Leuciscus cephalus L.). Comp Biochem Physiol 61B:451–457

    Google Scholar 

  • Gerke V, Weber K (1985) The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific protein kinases is related in sequence to the S-100 protein of glial cells. EMBO J 4:2917–2920

    PubMed  Google Scholar 

  • Gillen MF, Banville D, Rutledge RG, Narang S, Seligy VL, Whitfield JF, MacManus JP (1987) A complete complementary DNA for the oncodevelopmental calcium-binding protein, oncomodulin. J Biol Chem 262:5308–5312

    PubMed  Google Scholar 

  • Gillis J-M, Thomason DB, Le Fevre J, Kretsinger RH (1982) Parvalbumin and muscle relaxation: a computer simulation study. J Muscle Res Cell Motil 3:377–398

    PubMed  Google Scholar 

  • Glenney JR Jr, Tack BF (1985) Amino-terminal sequence of p36 and associated p10: identification of the site of tyrosine phosphorylation and homology with S-100. Proc Natl Acad Sci USA 82:7884–7888

    PubMed  Google Scholar 

  • Glenney JR Jr, Kindy MS, Zokas L (1989) Isolation of a new member of the S100 protien family: amino acid sequence, tissue, and subcellular distribution. J Cell Biol 108:569–578

    PubMed  Google Scholar 

  • Goodman M (1980) Molecular evolution of the calmodulin family. In: Siegel FL, Carafoli E, Kretsinger RH, MacLennan DH, Wasserman RH (eds) Calcium-binding proteins: structure and function. Elsevier North-Holland, New York, pp 347–354

    Google Scholar 

  • Goodman M, Pechére J-F (1977) The evolution of muscular parvalbumins investigated by the maximum parsimony method. J Mol Evol 9:131–158

    PubMed  Google Scholar 

  • Goodman M, Pechére J-F, Haiech J, DeMaille JG (1979) Evolutionary diversification of structure and function in the family of intracellular calcium-binding proteins. J Mol Evol 13: 331–352

    PubMed  Google Scholar 

  • Goodwin EB, Szent-Györgyi AG, Leinwand LA (1987) Cloning and characterization of the scallop essential and regulatory myosin light chain cDNAs. J Biol Chem 262:11052–11056

    PubMed  Google Scholar 

  • Grand RJA, Perry SV (1978) Amino acid sequence of the troponin C-like protein (modulator protein) from bovine uterus. FEBS Lett 92:137–142

    Google Scholar 

  • Grand RJA, Shenolikar S, Cohen P (1981) The amino acid sequence of the δ subunit (calmodulin) of rabbit skeletal muscle phosphorylase kinase. Eur J Biochem 113:359–367

    PubMed  Google Scholar 

  • Hagiwara M, Achiai M, Owada K, Tanaka T, Hidaka H (1988) Modulation of tyrosine phosphorylation of p36 and other substrates by the S-100 protein. J Biol Chem 263:6438–6441

    PubMed  Google Scholar 

  • Hardin PE, Klein WH (1987) Unusual sequence conservation in the 5′ and 3′ untranslated regions of the sea urchin Spec mRNAs. J Mol Evol 25:126–133

    PubMed  Google Scholar 

  • Hardin PE, Angerer LM, Hardin SH, Angerer RC, Klein WH (1988) Spec 2 genes inStrongylocentrotus purpuratus. Structure and differential expression in embryonic aboral ectoderm cells. J Mol Biol 202:417–431

    PubMed  Google Scholar 

  • Hardin SH, Carpenter CD, Hardin PE, Bruskin AM, Klein WH (1985) Structure of the Spec1 gene encodinga major calciumbinding protein in the embryonic ectoderm of the sea urchin,Strongylocentrotus purpuratus. J Mol Biol 186:243–255

    PubMed  Google Scholar 

  • Hardin SH, Keast MJ, Hardin PE, Klein WH (1987) Use of consensus oligonucleotides for detecting and isolating nucleic acids encoding calicum binding domains of the troponin C superfamily. Biochemistry 26:3518–3523

    PubMed  Google Scholar 

  • Hardy DO, Bender PK, Kretsinger RH (1987) Two calmodulin genes are expressed inArbacia punctulata. An ancient gene duplication is indicated. J Mol Biol 198:223–227

    PubMed  Google Scholar 

  • Hartigan JA (1973) Minimum mutation fits to a given tree. Biometrics 29:53–65

    Google Scholar 

  • Head JF (1989) Amino acid sequence of a low molecular weight, high affinity calcium-binding protein from the optic lobe of the squidLoligo pealei. J Biol Chem 264:7202–7209

    PubMed  Google Scholar 

  • Henderson SA, Xu Y-C, Chien KR (1988) Nucleotide sequence of full length cDNAs encoding rat cardiac myosin light chain-2. Nucleic Acids Res 16:4722

    PubMed  Google Scholar 

  • Henrotte JG (1952) A crystalline constitutent from myogen of carp muscle. Nature 169:968–969

    Google Scholar 

  • Herzberg O, James MNG (1985) Structure of the calcium regulatory protein troponin-C at 2.8 Å resolution. Nature 313: 653–659

    PubMed  Google Scholar 

  • Herzberg O, James MNG (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution. J Mol Biol 203:761–779

    PubMed  Google Scholar 

  • Hidaka H, Endo T, Kawamoto S, Yamada E, Umekawa H, Tanabe K, Hara K (1983) Purification and characterization of adipose tissue S-100b protein. J Biol Chem 258:2705–2709

    PubMed  Google Scholar 

  • Hoffmann E, Shi QW, Floroff M, Mickle DAG, Wu T-W, Olley PM, Jackowski G (1988) Molecular cloning and complete nucleotide sequence of a human ventricular myosin light chain 1. Nucleic Acids Res 16:2353

    PubMed  Google Scholar 

  • Hofmann T, Kawakami M, Hitchman AJW, Harrison JE, Dorrington KJ (1979) The amino acid sequence of porcine intestinal calcium-binding protein. Can J Biochem 57:737–748

    PubMed  Google Scholar 

  • Hosoya H, Takagi T, Mabuchi I, Iwaasa H, Sakai H, Hiramoto Y, Konishi K (1988) The amino acid sequence, immunofluorescence and microinjection studies on the 15 kDa calcium-binding protein from sea urchin egg. Cell Struct Funct 13:525–532

    PubMed  Google Scholar 

  • Huang B, Mengersen A, Lee VD (1988a) Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol 107:133–140

    PubMed  Google Scholar 

  • Huang B, Watterson DM, Lee VD, Schibler MJ (1988b) Purification and characterization of a basal body-associated Ca2+-binding protein. J Cell Biol 107:121–131

    PubMed  Google Scholar 

  • Huang W-Y, Cohn DV, Hamilton JW (1975) Calcium-binding protein of bovine intestine. The complete amino acid sequence. J Biol Chem 250:7647–7655

    PubMed  Google Scholar 

  • Hunziker W (1986) The 28-kDa vitamin D-dependent calciumbinding protein has a six-domain structure. Proc Natl Acad Sci USA 83:7578–7582

    PubMed  Google Scholar 

  • Iida Y (1982) Molecular evolution of protein: internal homology in the amino acid sequence of calmodulin. J Mol Biol 159:167–177

    PubMed  Google Scholar 

  • Inouye S, Noguchi M, Sakaki Y, Takagi Y, Miyata T, Iwanaga S, Miyata T, Tsuji FI (1985) Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci USA 82:3154–3158

    PubMed  Google Scholar 

  • Isobe T, Okuyama T (1978) The amino-acid sequence of S-100 protein (PAP I-b protein) and its relation to the calcium-binding proteins. Eur J Biochem 89:379–388

    PubMed  Google Scholar 

  • Isobe T, Okuyama T (1981) The amino-acid sequence of the α subunit in bovine brain S-100a protein. Eur J Biochem 116: 79–86

    PubMed  Google Scholar 

  • Jackson-Grusby LL, Swiergiel J, Linzer DIH (1987) A growthrelated mRNA in cultured mouse cells encodes a placental calcium-binding protein. Nucleic Acids Res 15:6677–6690

    PubMed  Google Scholar 

  • Jamieson GA Jr, Bronson DD, Schachat FH, Vanaman TC (1980) Structure and function relationships among calmodulins and troponin C-like proteins from divergent eukaryotic organisms. Ann NY Acad Sci 356:1–13

    PubMed  Google Scholar 

  • Jauregui-Adell J, Pechére J-F (1978) Parvalbumins from coelacanth muscle. III. Amino acid sequence of the major component. Biochim Biophys Acta 536:275–282

    PubMed  Google Scholar 

  • Jauregui-Adell J, Pechére J-F, Briand G, Richet C, DeMaille JG (1982) Amino-acid sequence of an α-parvalbumin, pI=4.88, from frog skeletal muscle. Eur J Biochem 123:337–345

    PubMed  Google Scholar 

  • Jauregui-Adell J, Wnuk W, Cox JA (1989) Complete amino acid sequence of the sarcoplasmic calcium-binding protein (SCP-I) from crayfish (Astacus leptodactilus [sic]). FEBS Lett 243:209–212

    PubMed  Google Scholar 

  • Jensen R, Marshak DR, Anderson C, Lukas TJ, Watterson DM (1985) Characterization of human brain S100 protein fraction: amino acid sequence of S100β. J Neurochem 45:700–705

    PubMed  Google Scholar 

  • Joassin L, Gerday C (1977) The amino acid sequence of the major parvalbumin of the whiting (Gadus merlangus). Comp Biochem Physiol 57B:159–161

    Google Scholar 

  • Jukes TH (1963) Some recent advances in studies of the transcription of the genetic message. Adv Biol Med Phys 9:1–41

    Google Scholar 

  • Kasai H, Kato Y, Isobe T, Kawasaki H, Okuyama T (1980) Determination of the complete amino acid sequence of calmodulin (phenylalanine-rich acidic protein II) from bovine brain. Biomed Res 1:248–264

    Google Scholar 

  • Kato K, Kimura S (1985) S100ao (αα) protein is mainly located in the heart and striated muscles. Biochim Biophys Acta 842: 146–150

    PubMed  Google Scholar 

  • Kawashima M, Nabeshima Y, Obinata T, Fujii-Kuriyama Y (1987) A common myosin light chain is expressed in chicken embryonic, skeletal, cardiac, and smooth muscles and in brain continuously from embryo to adult. J Biol Chem 262:14408–14414

    PubMed  Google Scholar 

  • Kay BK, Shah AJ, Halstead WE (1987) Expression of the Ca2+-binding protein, paravlbumin, during embryonic development of the frog,Xenopus laevis. J Cell Biol 104:841–847

    PubMed  Google Scholar 

  • Kendrick-Jones J, Jakes R (1977) Myosin-linked regulation: a chemical approach. In: Riecker G, Weber A, Goodwin J (eds) Myocardial failure. International Boehringer Mannheim Symposium. Springer-Verlag, Berlin, pp 28–40

    Google Scholar 

  • Klee CB (1988) Ca2+-dependent phospholipid- (and membrane-) binding proteins. Biochemistry 27:6645–6653

    PubMed  Google Scholar 

  • Kligman D, Marshak DR (1985) Purification and characterization of a neurite extension factor from bovine brain. Proc Natl Acad Sci USA 82:7136–7139

    PubMed  Google Scholar 

  • Kobayashi T, Takasaki Y, Takagi T, Konishi K (1984) The amino acid sequence of sarcoplasmic calcium-binding protein obtained from sandworm,Perinereis vancaurica tetradentata. Eur J Biochem 144:401–408

    PubMed  Google Scholar 

  • Kobayashi T, Takagi T, Konishi K, Cox JA (1987) The primary structure of a new Mr 18,000 calcium vector protein from amphioxus. J Biol Chem 262:2613–2623

    PubMed  Google Scholar 

  • Kobayashi T, Takagi T, Konishi K, Hamada Y, Kawaguchi M, Kohama K (1988a) Amino acid sequence of the calcium-binding light chain of myosin from the lower eukaryote,Physarum polycephalum. J Biol Chem 263:305–313

    PubMed  Google Scholar 

  • Kobayashi T, Takagi T, Konishi K, Ohnishi K, Watanabe Y (1988b) Amino acid sequence of a calcium-binding protien (TCBP-10) fromTetrahymena. Eur J Biochem 174:579–584

    PubMed  Google Scholar 

  • Koller M, Strehler EE (1988) Characterization of an intronless human calmodulin-like pseudogene. FEBS Lett 239:121–129

    PubMed  Google Scholar 

  • Kretsinger RH (1972) Gene triplication deduced from the tertiary structure of a muscle calcium binding protein. Nature New Biol 240:85–88

    PubMed  Google Scholar 

  • Kretsinger RH (1975) Hypothesis: calcium modulated proteins contain EF-hands. In: Carafoli E (ed) Calcium transport in contraction and secretion. North-Holland Publishing, Amsterdam, p 469

    Google Scholar 

  • Kretsinger RH (1987) Calcium coordination and the calmodulin fold: divergent versus convergent evolution. Cold Spring Harbor Symp Quant Biol 52:499–510

    PubMed  Google Scholar 

  • Kretsinger RH, Barry CD (1975) The predicted structure of the calcium binding component of troponin. Biochim Biophys Acta 405:40–52

    PubMed  Google Scholar 

  • Kretsinger RH, Hardy DO (1987) Duplication of calmodulin gene inferred to occur prior to echinoderm, chordate divergence. In: Yagi K, Miyazak T (eds) Calcium signal and cell response. Springer-Verlag, Berlin, pp 157–163

    Google Scholar 

  • Kretsinger RH, Nockolds CE, Coffee CJ, Bradshaw RA (1971) The structure of a calcium binding protein from carp muscle. Cold Spring Harbor Symp Quant Biol 36:217–220

    Google Scholar 

  • Kretsinger RH, Mann JE, Simmonds JG (1982) Model of facilitated diffusion of calcium by the intestinal calcium binding protein. In: Normal AW, Schaefer K, Herrath DV, Grigoleit H-G (eds) Proceedings of the fifth workshop on vitamin D: chemical, biochemical and clinical endocrinology of calcium metabolism. de Gruyter, New York, pp 233–248

    Google Scholar 

  • Kretsinger RH, Rudnick SE, Weissman LJ (1986) Crystal structure of calmodulin. J Inorg Biochem 28:289–302

    PubMed  Google Scholar 

  • Kretsinger RH, Moncrief ND, Goodman M, Czelusniak J (1988) Homology of calcium-modulated proteins: their evolutionary and functional relationships. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer-Verlag, New York, pp 16–35

    Google Scholar 

  • Kumar CC, Cribbs L, Delaney P, Chien KR, Siddiqui MAQ (1986) Heart myosinlight chain 2 gene. Nucleotide sequence of full length cDNA and expression in normal and hypertensive rat. J Biol Chem 261:2866–2872

    PubMed  Google Scholar 

  • Kumar R, Wieben E, Beecher SJ (1989) The molecular cloning of the complementary deoxyribonucleic acid for bovine vitamin D-dependent calcium-binding protein: structure of the full-length protein and evidence for homologies with other calcium-binding proteins of the troponin-C superfamily of proteins. Mol Endocrinol 3:427–432

    PubMed  Google Scholar 

  • Kuwano R, Usui H, Maeda T, Fukui T, Yamanari N, Ohtsuka E, Ikehara M, Takahashi Y (1984) Molecular cloning and the complete nucleotide sequence of cDNA to mRNA for S-100 protein of rat brain. Nucleic Acids Res 12:7455–7465

    PubMed  Google Scholar 

  • Lagace L, Chandra T, Woo SLC, Means AR (1983) Identification of multiple species of calmodulin messenger RNA using a full length complementary DNA. J Biol Chem 258:1684–1688

    PubMed  Google Scholar 

  • Lefort A, Lecocq R, Libert F, Lamy F, Swillens S, Vassart G, Dumont JE (1989) Cloning and sequencing of a calciumbinding protein regulated by cyclic AMP in the thyroid. EMBO J 8:111–116

    PubMed  Google Scholar 

  • Lenz S, Lohse P, Seidel U, Arnold H-H (1989) The alkali light chains of human smooth and nonmuscle myosins are encoded by a single gene. Tissue specific expression by alternative splicing pathways. J Biol Chem 264:9009–9015

    PubMed  Google Scholar 

  • Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441

    PubMed  Google Scholar 

  • Lorkin PA, Lehmann H (1983) Malignant hyperthermia in pigs: a search for abnormalities in Ca2+ binding proteins. FEBS Lett 153:81–87

    PubMed  Google Scholar 

  • Lukas TJ, Iverson DB, Schleicher M, Watterson DM (1984) Structural characterization of a higher plant calmodulinSpinacia oleracea. Plant Physiol 75:788–795

    Google Scholar 

  • Lukas TJ, Wiggins ME, Watterson DM (1985) Amino acid sequence of a novel calmodulin from the unicellular algaChlamydomonas. Plant Physiol 78:477–483

    Google Scholar 

  • MacManus JP, Watson DC, Yaguchi M (1983) The complete amino acid sequence of oncomodulin—a parvalbumin-like calcium-binding protein from Morris hepatoma 5123tc. Eur J Biochem 136:9–17

    PubMed  Google Scholar 

  • MacManus JP, Watson DC, Yaguchi M (1986) The purification and complete amino acid sequence of the 9000-Mr Ca2+-binding protein from rat placenta. Identity with the vitamin D-dependent intestinal Ca2+-binding protein. Biochem J 235: 585–595

    PubMed  Google Scholar 

  • Maeda N, Zhu D, Fitch WM (1984) Amino acid sequences of lower vertebrateparvalbumins and their evolution: parvalbumins of boa, turtle, and salamander. Mol Biol Evol 1:473–488

    PubMed  Google Scholar 

  • Maisonpierre PC, Hastings KEM, Emerson CP Jr (1987) The cloning and the codon and amino acid sequence of the quail slow/cardiac troponin C cDNA. Methods Enzymol 139:326–337

    PubMed  Google Scholar 

  • Maita T, Umegane T, Kato Y, Matsuda G (1980) Amino-acid sequence of the L-1 light chain of chicken cardiac-muscle myosin. Eur J Biochem 107:565–575

    PubMed  Google Scholar 

  • Maita T, Chen J-I, Matsuda G (1981a) Amino-acid sequence of the 20000-molecular-weight light chain of chicken gizzardmuscle myosin. Eur J Biochem 117:417–424

    PubMed  Google Scholar 

  • Maita T, Umegane T, Matsuda G (1981b) Amino-acid sequence of the L-4 light chain of chicken skeletal-muscle myosin. Eur J Biochem 114:45–49

    PubMed  Google Scholar 

  • Maita T, Konno K, Ojima T, Matsuda G (1984) Amino acid sequences of the regulatory light chains of striated adductor muscle myosins from Ezo giant scallop and Akazara scallop. J Biochem 95:167–177

    PubMed  Google Scholar 

  • Maita T, Konno K, Maruta S, Norisue H, Matsuda G (1987a) Amino acid sequence of the essential light chain of adductor muscle myosin from Ezo giant scallop,Patinopecten yessoensis. J Biochem 102:1141–1149

    PubMed  Google Scholar 

  • Maita T, Tanaka H, Konno K, Matsuda G (1987b) Amino acid sequence of the regulatory light chain of squid mantle muscle myosin. J Biochem 102:1151–1157

    PubMed  Google Scholar 

  • Mangelsdorf DJ, Komm BS, McDonnell DP, Pike JW, Haussler MR (1987) Immunoselection of cDNAs to avian intestinal calcium binding protein 28K and a novel calmodulin-like protein: assessment of mRNA regulation by the vitamin D hormone. Biochemistry 26:8332–8338

    PubMed  Google Scholar 

  • Marshak DR, Clarke M, Roberts DM, Watterson DM (1984) Structural and functional properties of calmodulin from the eukaryotic microorganismDictyostelium discoideum. Biochemistry 23:2891–2899

    PubMed  Google Scholar 

  • Masiakowski P, Shooter EM (1988) Nerve growth factor induces the genes for two proteins related to a family of calcium-binding proteins in PC12 cells. Proc Natl Acad Sci USA 85: 1277–1281

    PubMed  Google Scholar 

  • Matsuda G, Maita T, Suzuyama Y, Setoguchi M, Umegane T (1977a) Amino acid sequence of the L-2 light chain of rabbit skeletal muscle myosin. J Biochem 81:809–811

    PubMed  Google Scholar 

  • Matsuda G, Suzuyama Y, Maita T, Umegane T (1977b) The L-2 light chain of chicken skeletal muscle myosin. FEBS Lett 84:53–56

    PubMed  Google Scholar 

  • Matsuda G, Maita T, Suzuyama Y, Setoguchi M, Umegane T (1978) The amino acid sequences of the tryptic, chymotryptic, and peptic peptides from the L-2 light chain of rabbit skeletal muscle myosin. Hoppe-Seyler's Z Physiol Chem 359: 629–640

    PubMed  Google Scholar 

  • Matsuda G, Maita T, Kato Y, Chen J-I, Umegane T (1981a) Amino acid sequences of the cardiac L-2A, L-2B, and gizzard 17000-M, light chains of chicken muscle myosin. FEBS Lett 135:232–236

    PubMed  Google Scholar 

  • Matsuda G, Maita T, Umegane T (1981b) The primary structure of L-1 light chain of chicken fast skeletal muscle myosin and its genetic implication. FEBS Lett 126:111–113

    PubMed  Google Scholar 

  • Miyake S, Emori Y, Suzuki K (1986) Gene organization of human calcium-activated neutral protease. Nucleic Acids Res 14:8805–8817

    PubMed  Google Scholar 

  • Miyanishi T, Maita T, Morita F, Kondo S, Matsuda G (1985) Amino acid sequences of the two kinds of regulatory light chains of adductor smooth muscle myosin fromPatinopecten yessoensis. J Biochem 97:541–551

    PubMed  Google Scholar 

  • Moews PG, Kretsinger RH (1975) Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J Mol Biol 91:201–228

    PubMed  Google Scholar 

  • Moore GW (1976) Proof for the maximum parsimony (“Red King”) algorithm. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York, p 117

    Google Scholar 

  • Moore GW, Barnabas J, Goodman M (1973) A method for constructing maximum parsimony ancestral amino acid sequences on a given network. J Theor Biol 38:459–485

    PubMed  Google Scholar 

  • Murphy LC, Murphy LJ Tsuyuki D, Duckworth ML, Shiu RPC (1988) Cloning and characterization of a cDNA encoding a highly conserved, putative calcium binding protein, identified by an anti-prolactin receptor antiserum. J Biol Chem 263: 2397–2401

    PubMed  Google Scholar 

  • Mutus B, Karuppiah N, Sharma RK, MacManus JP (1985) The differential stimulation of brain and heart cyclic-AMP phosphodiesterase by oncomodulin. Biochem Biophys Res Commun 131:500–506

    PubMed  Google Scholar 

  • Nabeshima Y, Fujii-Kuriyama Y, Muramatsu M, Ogata K (1982) Molecular cloning and nucleotide sequences of the complementary DNAs to chicken skeletal muscle myosin alkali light chain mRNAs. Nucleic Acids Res 10:6099–6110

    PubMed  Google Scholar 

  • Nabeshima Y, Fujii-Kuriyama Y, Muramatsu M, Ogata K (1984) Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature 308: 333–338

    PubMed  Google Scholar 

  • Nabeshima Y, Nabeshima Y-I, Nonomura Y, Fujii-Kuriyama Y (1987) Nonmuscle and smooth muscle myosin light chain mRNAs are generated from a single gene by the tissue-specific alternative RNA splicing. J Biol Chem 262:10608–10612

    PubMed  Google Scholar 

  • Nakamura S, Nabeshima Y-I, Kobayashi H, Nabeshima Y, Nonomura Y, Fujii-Kuriyama Y (1988) Single chicken cardiac myosin alkali light-chain gene generates two different mRNAs by alternative splicing of a complex exon. J Mol Biol 203: 895–904

    PubMed  Google Scholar 

  • Noegel A, Witke W, Schleicher M (1987) Calcium-sensitive non-muscle α-actinin contains EF-hand structures and highly-conserved regions. FEBS Lett 221:391–396

    PubMed  Google Scholar 

  • Nojima H (1989) Structural organization of multiple rat calmodulin genes. J Mol Biol 208:269–282

    PubMed  Google Scholar 

  • Nojima H, Sokabe H (1986) Structure of rat calmodulin processed genes with implications for a mRNA-mediated process of insertion. J Mol Biol 190:391–400

    PubMed  Google Scholar 

  • Nojima H, Kishi K, Sokabe H (1987) Multiple calmodulin mRNA species are derived from two distinct genes. Mol Cell Biol 7:1873–1880

    PubMed  Google Scholar 

  • Nudel U, Calvo JM, Shani M, Levy Z (1984) The nucleotide sequence of a rat myosin light chain 2 gene. Nucleic Acids Res 12:7175–7186

    PubMed  Google Scholar 

  • Odink K, Cerletti N, Bruggen J, Clerc RG, Tarcsay L, Zwadlo G, Gerhards G, Schlegel R, Sorg C (1987) Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330:80–82

    PubMed  Google Scholar 

  • Ohno S, Emori Y, Imajoh S, Kawasaki H, Kisaragi M, Suzuki K (1984) Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature 312:566–570

    PubMed  Google Scholar 

  • Ohno S, Emori Y, Suzuki K (1986) Nucleotide sequence of a cDNA coding for the small subunit of human calcium-dependent protease. Nucleic Acids Res 14:5559

    PubMed  Google Scholar 

  • Parker VP, Falkenthal S, Davidson N (1985) Characterization of the myosin light-chain-2 gene ofDrosophila melanogaster. Mol Cell Biol 5:3058–3068

    PubMed  Google Scholar 

  • Parmacek MS, Leiden JM (1989) Structure and expression of the murine slow/cardiac troponin C gene. J Biol Chem 264: 13217–13225

    PubMed  Google Scholar 

  • Parmentier M, Lawson DEM, Vassart G (1987) Human 27-kDa calbindin complementary DNA sequence. Evolutionary and functional implications. Eur J Biochem 170:207–215

    PubMed  Google Scholar 

  • Pearson RB, Jakes R, John M, Kendrick-Jones J, Kemp BE (1986) Phosphorylation site sequence of smooth muscle myosin light chain (Mr=20000). FEBS Lett 168:108–112

    Google Scholar 

  • Pechére J-F, Capony JP, Ryden L, DeMaille J (1971) The amino acid sequence of the major parvalbumin from hake muscle. Biochem Biophys Res Commun 43:1106–1111

    PubMed  Google Scholar 

  • Pechére J-F, Capony J-P, DeMaille J (1973) Evolutionary aspects of the structure of muscular parvalbumins. Syst Zool 22:533–548

    Google Scholar 

  • Pechére J-F, Rochat H, Ferraz C (1978) Parvalbumins from coelacanth muscle. II. Amino acid sequence of the two less acidic components. Biochim Biophys Acta 536:269–274

    PubMed  Google Scholar 

  • Periasamy M, Strehler EE, Garfinkel LI, Gubits RM, Ruiz-Opazo N, Nadal-Ginard B (1984) Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J Biol Chem 259:13595–13604

    PubMed  Google Scholar 

  • Perret C, Lomri N, Gouhier N, Auffray C, Thomasset M (1988a) The rat vitamin-D-dependent calcium-binding protein (9-kDa CaBP) gene. Complete nucleotide sequence and structural organization. Eur J Biochem 172:43–51

    PubMed  Google Scholar 

  • Perret C, Lomri N, Thomasset M (1988b) Evolution of the EF-hand calcium-binding protein family: evidence for exon shuffling and intron insertion. J Mol Evol 27:351–364

    PubMed  Google Scholar 

  • Persechini A, Kretsinger RH (1988) The central helix of calmodulin functions as a flexible tether. J Biol Chem 263:12175–12178

    PubMed  Google Scholar 

  • Persechini A, Blumenthal DK, Jarrett HW, Klee CB, Hardy DO, Kretsinger RH (1989) The effects of deletions in the central helix of calmodulin on enzyme activation and peptide binding. J Biol Chem 264:8052–8058

    PubMed  Google Scholar 

  • Prasher DC, McCann RO, Longiaru M, Cormier MJ (1987) Sequence comparisons of complementary DNAs encoding aequorin isotypes. Biochemistry 26:1326–1332

    PubMed  Google Scholar 

  • Putkey JA, Ts'ui KF, Tanaka T, Lagace L, Stein JP, Lai EC, Means AR (1983) Chicken calmodulin genes. A species comparison of cDNA sequences and isolation of a genomic clone. J Biol Chem 258:11864–11870

    PubMed  Google Scholar 

  • Putkey JA, Carroll SL, Means AR (1987) The nontranscribed chicken calmodulin pseudogene cross-hybridizes with mRNA from the slow-muscle troponin C gene. Mol Cell Biol 7:1549–1553

    PubMed  Google Scholar 

  • Reid RE, Gariépy J, Saund AK, Hodges RS (1981) Calcium-induced protein folding. Structure-affinity relationships in synthetic analogs of the helix-loop-helix calcium binding unit. J Biol Chem 256:2742–2751

    PubMed  Google Scholar 

  • Reinach FC, Karlsson R (1988) Cloning, expression, and sitedirected mutagenesis of chicken skeletal muscle troponin C. J Biol Chem 263:2371–2376

    PubMed  Google Scholar 

  • Robert B, Daubas P, Akimenko M-A, Cohen A, Garner I, Guenet J-L, Buckingham M (1984) A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene. Cell 39:129–140

    PubMed  Google Scholar 

  • Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105: 1343–1353

    PubMed  Google Scholar 

  • Roher A, Lieska N, Spitz W (1986) The amino acid sequence of human cardiac troponin-C. Muscle Nerve 9:73–77

    PubMed  Google Scholar 

  • Romero-Herrera AE, Castillo O, Lehmann H (1976) Human skeletal muscle proteins. The primary structure of troponin C. J Mol Evol 8:251–270

    PubMed  Google Scholar 

  • Sakihama T, Kakidani H, Zenita K, Yymoto N, Kikuchi T, Sasaki T, Kannagi R, Nakanishi S, Ohmori M, Takio K, Titani K, Murachi T (1985) A putative Ca2+-binding protein: structure of the light subunit of porcine calpain elucidated by molecular cloning and protein sequence analysis. Proc Natl Acad Sci USA 82:6075–6079

    PubMed  Google Scholar 

  • Salvato M, Sulston J, Albertson D, Brenner S (1986) A novel calmodulin-like gene from the nematodeCaenorhabditis elegans. J Mol Biol 190:281–290

    PubMed  Google Scholar 

  • Saris CJ, Kristensen T, D'Eustachio P, Hicks LJ, Noonan DJ, Hunter T, Tack BF (1987) cDNA sequence and tissue distribution of the mRNA for bovine and murine p11, the S100-related light chain of the protein-tyrosine kinase substrate p36 (calpactin I). J Biol Chem 262:10663–10671

    PubMed  Google Scholar 

  • Sasagawa T, Ericsson LH, Walsh KA, Schreiber WE, Fischer EH, Titani K (1982) Complete amino acid sequence of human brain calmodulin. Biochemistry 21:2565–2569

    PubMed  Google Scholar 

  • Satyshur KA, Rao ST, Pyzalska D, Drendel W, Greaser M, Sundaralingam M (1988) Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-Å resolution. J Biol Chem 263:1628–1647

    PubMed  Google Scholar 

  • Schaefer WH, Hinrichsen RD, Burgess-Cassler A, Kung C, Blair IA, Watterson DM (1987a) A mutantParamecium with a defective calcium-dependent potassium conductance has an altered calmodulin: a nonlethal selective alteration in calmodulin regulation Proc Natl Acad Sci USA 84:3931–3935

    PubMed  Google Scholar 

  • Schaefer WH, Lukas TJ, Blair IA, Schultz JE, Watterson DM (1987b) Amino acid sequence of a novel calmodulin fromParamecium tetraurelia that contains dimethyllysine in the first domain. J Biol Chem 262:1025–1029

    PubMed  Google Scholar 

  • Seidel U, Bober E, Winter B, Lenz S, Lohse P, Arnold HH (1987) The complete nucleotide sequences of cDNA clones coding for human myosin light chains 1 and 3. Nucleic Acids Res 15:4989

    PubMed  Google Scholar 

  • SenGupta B, Friedberg F, Detera-Wadleigh SD (1987) Molecular analysis of human and rat calmodulin complementary DNA clones. J Biol Chem 262:16663–16670

    PubMed  Google Scholar 

  • Sherbany AA, Parent AS, Brosius J (1987) Rat calmodulin cDNA. DNA 6:267–272

    PubMed  Google Scholar 

  • Simmen RCM, Tanaka T, Ts'ui KF, Putkey JA, Scott MJ, Lai EC, Means AR (1985) The structural organization of the chicken calmodulin gene. J Biol Chem 260:907–912

    PubMed  Google Scholar 

  • Smith VL, Doyle KE, Maune JF, Munjaal RP, Beckingham K (1987) Structure and sequence of theDrosophila melanogaster calmodulin gene. J Mol Biol 196:471–485

    PubMed  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Stein JP, Munjaal RP, Lagace L, Lai EC, O'Malley BW, Means AR (1983) Tissue-specific expression of a chicken calmodulin pseudogene lacking intervening sequences. Proc Natl Acad Sci USA 80:6485–6489

    PubMed  Google Scholar 

  • Strehler EE, Periasamy M, Strehler-Page M-A, Nadal-Ginard B (1985) Myosin light chain 1 and 3 gene has two structurally distinct and differentially regulated promotors evolving at different rates. Mol Cell Biol 5:3168–3182

    PubMed  Google Scholar 

  • Strynadka NCJ, James MNG (1989) Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 58:951–998

    PubMed  Google Scholar 

  • Suzuyama Y, Umegane T, Maita T, Matsuda G (1980) The amino acid sequence of the L-2 light chain of chicken skeletal muscle myosin. Hoppe-Seyler's Z Physiol Chem 361:119–127

    PubMed  Google Scholar 

  • Swan DG, Hale RS, Dhillon N, Leadlay PF (1987) A bacterial calcium-binding protein homologous to calmodulin. Nature 329:84–85

    PubMed  Google Scholar 

  • Szebenyi DME, Moffat K (1986) The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem 261:8761–8777

    PubMed  Google Scholar 

  • Szebenyi DME, Obendorf SK, Moffat K (1981) Structure of vitamin D-dependent calcium-binding protein from bovine intestine. Nature 294:327–332

    PubMed  Google Scholar 

  • Takagi T, Konishi K (1983) Amino acid sequence of troponin C obtained from ascidian (Halocynthia roretzi) body wall muscle. J Biochem 94:1753–1760

    PubMed  Google Scholar 

  • Takagi T, Konishi K (1984a) Amino acid sequence of the β chain of sarcoplasmic calcium binding protein (SCP) obtained from shrimp tail muscle. J Biochem 96:59–67

    PubMed  Google Scholar 

  • Takagi T, Konishi K (1984b) Amino acid sequence of α chain of sarcoplasmic calcium binding protein obtained from shrimp tail muscle. J Biochem 95:1603–1615

    PubMed  Google Scholar 

  • Takagi T, Nemoto T, Konishi K, Yazawa M, Yagi K (1980) The amino acid sequence of the calmodulin obtained from sea anemone (Metridium senile) muscle. Biochem Biophys Res Commun 96:377–381

    PubMed  Google Scholar 

  • Takagi T, Kobayashi T, Konishi K (1984) Amino-acid sequence of sarcoplasmic calcium-binding protein from scallop (Patinopecten yessoensis) adductor striated muscle. Biochim Biophys Acta 787:252–257

    Google Scholar 

  • Takagi T, Konishi K, Cox JA (1986a) Amino acid sequence of two sarcoplasmic calcium-binding proteins from the protochordate amphioxus. Biochemistry 25:3585–3592

    Google Scholar 

  • Takagi T, Kudoh S, Konishi K (1986b) The amino acid sequence of ascidian (Halocynthia roretzi) myosin light chains. Biochim Biophys Acta 874:318–325

    Google Scholar 

  • Takagi T, Nojiri M, Konishi K, Maruyama K, Nonomura Y (1986c) Amino acid sequence of vitamin D-dependent calcium-binding protein from bovine cerebellum. FEBS Lett 201: 41–45

    PubMed  Google Scholar 

  • Takeda T, Yamamoto M (1987) Analysis andin vivo disruption of the gene coding for calmodulin inSchizosaccharomyces pombe. Proc Natl Acad Sci USA 84:3580–3584

    PubMed  Google Scholar 

  • Tanaka H, Maita T, Ojima T, Nishita K, Matsuda G (1988) Amino acid sequence of the regulatory light chain of clam foot muscle myosin. J Biochem 103:572–580

    PubMed  Google Scholar 

  • Thatcher DR, Pechére J-F (1977) The amino-acid sequence of the major parvalbumin from thornback-ray muscle. Eur J Biochem 75:121–132

    PubMed  Google Scholar 

  • Thomasset M, Desplan C, Warembourg M, Perret C (1986) Vitamin-D dependent 9 kDa calcium-binding protein gene: cDNA cloning, mRNA distribution and regulation. Biochimie 68:935–940

    PubMed  Google Scholar 

  • Toda H, Yazawa M, Kondo K, Honma T, Narita K, Yagi K (1981) Amino acid sequence of calmodulin from scallop (Patinopecten) adductor muscle. J Biochem 90:1493–1505

    PubMed  Google Scholar 

  • Toda H, Yazawa M, Sakiyama F, Yagi K (1985) Amino acid sequence of calmodulin from wheat germ. J Biochem 98:833–842

    PubMed  Google Scholar 

  • Tomlinson CR, Klein WH (1989) Temporal and spatial transcriptional regulation of the aboral ectoderm-specific Spec genes during sea urchin embryogenesis. Mol Rep Dev (in press)

  • Tschudi C, Young AS, Ruben L, Patton CL, Richards FF (1985) Calmodulin genes in trypanosomes are tandemly repeated and produce multiple mRNAs with a common 5′ leader sequence. Proc Natl Acad Sci USA 82:3998–4002

    PubMed  Google Scholar 

  • Tufty RM, Kretsinger RH (1975) Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T7 lysozyme. Science 187:167–169

    PubMed  Google Scholar 

  • Umegane T, Maita T, Matsuda G (1982) Amino-acid sequence of the L-1 light chain of chicken fast skeletal-muscle myosin. Hoppe-Seyler's Z Physiol Chem 363:1321–1330

    PubMed  Google Scholar 

  • Vanaman TC, Sharief F (1979) Structural properties of calmodulin from divergent eucaryotic organisms. Fed Proc 38:788

    Google Scholar 

  • Van der Bliek AM, Meyers MB, Biedler JL, Hes E, Borst P (1986) A 22-kd protein (sorcin/V19) encoded by an amplified gene in multidrug-resistant cells, is homologous to the calcium-binding light chain of calpain. EMBO J 5:3201–3208

    PubMed  Google Scholar 

  • van Eerd J-P, Takahashi K (1976) Determination of the complete amino acid sequence of bovine cardiac troponin C. Biochemistry 15:1171–1180

    PubMed  Google Scholar 

  • van Eerd J-P, Capony J-P, Ferraz C, Pechére J-F (1978) The amino-acid sequence of troponin C from frog skeletal muscle. Eur J Biochem 91:231–242

    PubMed  Google Scholar 

  • Varghese S, Lee S, Huang Y-C, Christakos S (1988) Analysis of rat vitamin D-dependent calbindin-D28K gene expression. J Biol Chem 263:9776–9784

    PubMed  Google Scholar 

  • Wasserman RH, Taylor AN (1966) Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science 152: 791–793

    Google Scholar 

  • Watanabe B, Maita T, Konno K, Matsuda G (1986) Aminoacid sequence of LC-1 light chain of squid mantle muscle myosin. Biol Chem Hoppe-Seyler 367:1025–1032

    PubMed  Google Scholar 

  • Watterson DM, Sharief F, Vanaman TC (1980) The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem 255:962–975

    PubMed  Google Scholar 

  • Weeds AG, McLachlan AD (1974) Structural homology of myosin alkali light chains, troponin C and carp calcium binding protein. Nature 252:646–649

    PubMed  Google Scholar 

  • Wilkinson JM (1976) The amino acid sequence of troponin C from chicken skeletal muscle. FEBS Lett 70:254–256

    PubMed  Google Scholar 

  • Wilkinson JM (1980) Troponin C from rabbit slow skeletal and cardiac muscle is the product of a single gene. Eur J Biochem 103:179–188

    PubMed  Google Scholar 

  • Wilson PW, Harding M, Lawson DEM (1985) Putative amino acid sequences of chick calcium-binding protein deduced from a complementary DNA sequence. Nucleic Acids Res 13:8867–8881

    PubMed  Google Scholar 

  • Wilson PW, Rogers J, Harding M, Pohl V, Pattyn G, Lawson DEM (1988) Structure of chick chromosomal genes for calbindin and calretinin. J Mol Biol 200:615–625

    PubMed  Google Scholar 

  • Wnuk W (1988) Calcium binding to troponin C and the regulation of muscle contraction. In: Gerday C, Bolis L, Gilles R (eds) Calcium and calcium binding proteins: molecular and functional aspects. Springer-Verlag, Berlin, pp 44–68

    Google Scholar 

  • Wnuk W, Schoechlin M, Kobayashi T, Takagi T, Konishi K, Hoar PE, Kerrick WGL (1986) Two isoforms of troponin C from crayfish. Their characterization and a comparison of their primary structure with the tertiary structure of skeletal troponin C. J Muscle Res Cell Motil 7:67–68

    Google Scholar 

  • Wood TL, Kobayashi Y, Frantz G, Varghese S, Christakos S, Tobin AJ (1988) Molecular cloning of mammalian 28,000 Mr vitamin D-dependent calcium binding protein (calbindin-D 28K): expression of calbindin-D28K RNAs in rodent brain and kidney. DNA 7:585–593

    PubMed  Google Scholar 

  • Xiang M, Bedard P-A, Wessel G, Filion M, Brandhorst B, Klein WH (1988) Tandem duplication and divergence of a sea urchin protein belonging to the troponin C superfamily. J Biol Chem 263:17173–17180

    PubMed  Google Scholar 

  • Yamakuni T, Kuwano R, Odani S, Miki N, Yamaguchi Y, Takahashi Y (1986) Nucleotide sequence of cDNA to mRNA for a cerebellar Ca-binding protein, spot 35 protein. Nucleic Acids Res 14:6768

    PubMed  Google Scholar 

  • Yamanaka MK, Saugstad JA, Hanson-Painton O, McCarthy BJ, Tobin SL (1987) Structure and expression of theDrosophila calmodulin gene. Nucleic Acids Res 15:3335–3348

    PubMed  Google Scholar 

  • Yazawa M, Yagi K, Toda H, Kondo K, Narita K, Yamazaki R, Sobue K, Kakiuchi S, Nagao S, Nozawa Y (1981) The amino acid sequence of theTetrahymena calmodulin which specifically interacts with guanylate cyclase. Biochem Biophys Res Commun 99:1051–1057

    PubMed  Google Scholar 

  • Zhu D-X, Maeda N, Fitch WM (1985) Amino acid sequences of two parvalbumins from electric eel (Electrophorus electricus). Sci Sin 28B:926–941

    Google Scholar 

  • Zimmer DB, Van Eldik LJ (1989) Analysis of the calciummodulated proteins, calmodulin, and their target proteins during C6 glioma cell differentiation. J Cell Biol 108:141–151

    PubMed  Google Scholar 

  • Zolese G, Tangorra A, Curatola G, Giambanco I (1988) Interaction of S100-b protein with cardiolipin vesicles as monitored by electron spin resonance, pyrene fluorescence and circular dichroism. Cell Calcium 9:149–157

    PubMed  Google Scholar 

  • Zot AS, Potter JD, Straus WL (1987) Isolation and sequence of a cDNA clone for rabbit fast skeletal muscle troponin C. Homology with calmodulin and parvalbumin. J Biol Chem 262:15418–15421

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moncrief, N.D., Kretsinger, R.H. & Goodman, M. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol 30, 522–562 (1990). https://doi.org/10.1007/BF02101108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101108

Key words

Navigation