Skip to main content

Plants for Chemotherapy of Neoplastic Diseases

  • Chapter
  • 1538 Accesses

Abstract

Each year in the United States more than 1 million people are diagnosed with cancer, and about 500,000 people die from the disease. For the most part, the reason that cancer is a fatal disease is that cancer cells can invade through, and metastasize to, distant organs in the body. The hallmarks of malignant neoplastic tissue are unregulated cell proliferation, invasiveness, and metastasis to distant sites in the body. Surgery and radiotherapy can eradicate localized tumors but may fail because the cancer may have metastasized to other areas of the body; chemotherapy, if used properly, may control or eliminate metastasis. The array of drugs used for the treatment of cancer includes antimetabolites (methotrexate [Trexall®]), fluoouracil (Efudex®), mercaptopurine (Puri-Nethol®), cytarabine (Cytosar®), covalent DNA-binding drugs (nitrogen mustards, alkylating agents), noncovalent binding drugs (anthracyclines), antiestrogens, and inhibitors of chromatin function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sung HW, Reynolds MC, Nan JS, Cassady JM, Snapka RM. Inhibition of topoisomerase II by liriodenine. Biochem Pharmacol 1997;54:467–473.

    Article  Google Scholar 

  2. Sagen AL, Sahpaz S, Mavi S, Hostettmann K. Isoquinoline alkaloids from Artabotrys rachypetalus. Biochem Syst Ecol 2003;31:1447–1449.

    Article  CAS  Google Scholar 

  3. Wu YC, Chen CH, Yang TH, et al. Cytotoxic aporphines from Artabotrys uncinatus and the structure and stereochemistry of artacinatine. Phytochemistry 1989;28:2191–2195.

    Article  CAS  Google Scholar 

  4. Wijeratne EMK, Gunatilaka AAL, Kingston DGI, Haltiwanger RC, Eggleston DS. Artabotrine: a novel bioactive alkaloid from Artabotrys zeylanicus. Tetrahedron 1995;51:7877–7882.

    Article  CAS  Google Scholar 

  5. Achenbach H, Hemrich H. Alkaloids, flavonoids and phenylpropanoids of the West African plant Oxymitra velutina. Phytochemistry 1991;30:1265–1267.

    Article  CAS  Google Scholar 

  6. Woo SH, Sun NJ, Cassady JM, Snapka RM. Topoisomerase II inhibition by aporphine alkaloids. Biochem Pharmacol 1999;57:1141–1145.

    Article  PubMed  CAS  Google Scholar 

  7. Makhey D, Gatto B, Chiang Y, Liu A, Liu LF, LaVoie EJ. Coralyne and related compounds as mammalian topoisomerase I and topoisomerase II poisons. Bioorg Med Chem 1996;4:781–791.

    Article  PubMed  CAS  Google Scholar 

  8. Li G, Lee CS, Woo MH, Lee SH, Chang HW, Son JK. Lignans from the bark of Machilus thunbergii and their DNA topoisomerases I and II inhibition and cytotoxicity. Biol Pharm Bull 2004;27:1147–1150.

    Article  PubMed  CAS  Google Scholar 

  9. Huang RL, Chen CC, Huang YL, et al. Anti-tumor effects of D-dicentrine from the root of Lindera megaphylla. Planta Med 1998;64:212–215.

    Article  PubMed  CAS  Google Scholar 

  10. Zhou BN, Johnson RK, Mattern MR, et al. Isolation and biochemical characterization of a new topoisomerase I inhibitor from Ocotea leucoxylon. J Nat Prod 2000;63:217–221.

    Article  PubMed  CAS  Google Scholar 

  11. Hoet S, Stevigny C, Block S, et al. Alkaloids from Cassytha filiformis and related aporphines: antitrypanosomal activity, cytotoxicity, and interaction with DNA and topoisomerases. Planta Med 2004;70:407–413.

    Article  PubMed  CAS  Google Scholar 

  12. Chen IS, Chen JJ, Duh CY, Tsai IL. Cytotoxic lignans from formosan Hernandia nymphaeifolia. Phytochemistry 1997;45:991–996.

    Article  PubMed  CAS  Google Scholar 

  13. Chen KS, Wu YC, Teng CM, Ko FN, Wu TS. Bioactive alkaloids from Illigera luzonensis. J Nat Prod 1997;60:645–647.

    Article  PubMed  CAS  Google Scholar 

  14. Guh JH, Ko FN, Yu SM, Wu YC, Teng CM. Pharmacological evaluation of N-methyl-actinodaphnine, a new vascular a-adrenoceptor antagonist, isolated from Illigera luzonensis. Eur J Pharmacol 1995;279:33–41.

    Article  PubMed  CAS  Google Scholar 

  15. Ting CY, Hsu CT, Hsu HT, et al. Isodiospyrin as a novel human DNA topoisomerase I inhibitor. Biochem Pharmacol 2003;66:1981–1991.

    Article  PubMed  CAS  Google Scholar 

  16. Hande KR. Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim Biophys Acta1998;1400(1–3):173–184.

    PubMed  CAS  Google Scholar 

  17. Lee HH. Colouring matters from Prismatomeris malayana. Phytochemistry 1969;8:501–503.

    Article  CAS  Google Scholar 

  18. Kanokmedhakul K, Kanokmedhakul S, Phatchana R. Biological activity of anthraquinones and triterpenoids from Prismatomeris fragrans. J Ethnopharmacol 2005;100:284–288.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou Z, Jiang SH, Zhu DY, Lin LZ, Cordell GA. Anthraquinones from Knoxia valerianoides. Phytochemistry 1994;36:765–768.

    Article  CAS  Google Scholar 

  20. Yang YJ, Shu HY, Min ZD. Anthraquinones isolated from Morinda officinalis and Damnacanthus indicus. Yao Xue Xue Bao 1992;27:358–364.

    PubMed  CAS  Google Scholar 

  21. Li S, Ouyang Q, Tan X, Shi S, Yao Z. Chemical constituents of Morinda officinalis How. Zhongguo Zhong Yao Za Zhi 1991;11:675–676.

    Google Scholar 

  22. Faltynek CR, Schroeder J, Mauvais P, et al. Damnacanthal is a highly potent, selective inhibitor of p56lck tyrosine kinase activity. Biochemistry 1995;34:12,404–12,410.

    Article  PubMed  CAS  Google Scholar 

  23. Tosa H, Iinuma M, Asai F, et al. Anthraquinones from Neonauclea calycina and their inhibitory activity against DNA topoisomerase II. Biol Pharm Bull 1998;21:641–642.

    PubMed  CAS  Google Scholar 

  24. Hiwasa T, Arase Y, Chen Z, et al. Stimulation of ultraviolet-induced apoptosis of human fibroblast UVr-1 cells by tyrosine kinase inhibitors. FEBS Lett 1999;444:173–176.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang ZQ, Li Y, Ming Y, Luo Z P, Zhao YM. The effect of Morinda officinalis How, a Chinese traditional medicinal plant, on the DRL 72-s schedule in rats and the forced swimming test in mice. Pharmacol Biochem Behav 2002;72:39–43.

    Article  PubMed  CAS  Google Scholar 

  26. Li YF, Zheng HG, Ming Y, Yi MZ, Zhi PL. Inhibition of the oligosaccharides extracted from Morinda officinalis, a Chinese traditional herbal medicine, on the cortico-sterone induced apoptosis in PC12 cells. Life Sci 2003;72:933–942.

    Article  PubMed  CAS  Google Scholar 

  27. Li YF, Liu YQ, Ming Y, et al. The cytoprotective effect of inulin-type hexasaccharide extracted from Morinda officinalis on PC12 cells against the lesion induced by cortico-sterone. Life Sci 2004;75:1531–1538.

    Article  PubMed  CAS  Google Scholar 

  28. Wang LK, Johnson RK, Hecht SM. Inhibition of topoisomerase I function by nitidine and fagaronine. Chem Res Toxicol 1993;6:813–818.

    Article  PubMed  CAS  Google Scholar 

  29. Larsen AK, Grondard L, Couprie J, et al. The antileukemic alkaloid fagaronine is an inhibitor of DNA topoisomerases I and II. Biochem Pharmacol 1993;46:1403–1412.

    Article  PubMed  CAS  Google Scholar 

  30. Ko FN, Chen IS, Wu SJ, Lee LG, Haung TF, Teng CM. Antiplatelet effects of chelerythrine chloride isolated from Zanthoxylum simulans. Biochim Biophys Acta 1990;1052:360–365.

    Article  PubMed  CAS  Google Scholar 

  31. Chmura SJ, Dolan ME, Cha A, Mauceri HJ, Kufe DW, Weichselbaum RR. In vitro and in vivo activity of protein kinase C inhibitor chelerythrine chlorise induces tumor cell toxicity and growth delay in vivo. Clin Cancer Res 2000;6:737–742.

    PubMed  CAS  Google Scholar 

  32. Kemény-Beke A, Aradi J, Damjanovich J, et al. Apoptotic response of uveal melanoma cells upon treatment with chelidonine, sanguinarine and chelerythrine. Cancer Lett 2005, in press.

    Google Scholar 

  33. Paik SY, Koh KH, Beak SM, Paek SH, Kim JA. The essential oils from Zanthoxylum schinifolium pericarp induce apoptosis of HepG2 human hepatoma cells through increased production of reactive oxygen species. Biol Pharm Bull 2005;28:802–807.

    Article  PubMed  CAS  Google Scholar 

  34. Wada S, Reiko T, Akira I, Shunyo M. In vitro inhibitory effects of DNA topoiso-merase II by fernane-type triterpenoids isolated from a Euphorbia genus. Bioorg Med Chem Lett 1998;8:2829–2832.

    Article  PubMed  CAS  Google Scholar 

  35. Setzer WN, Xiaoming S, Bates RB, et al. A Phytochemical investigation of Alchornea latifolia. Fitoterapia 2000;71:195–198.

    Article  PubMed  CAS  Google Scholar 

  36. Vongvanich N, Kittakoop P, Kramyu J, Tanticharoen M, Thebtaranonth Y. Phyllan-thusols A and B, cytotoxic norbisabolane glycosides from Phyllanthus acidus Skeels. J Org Chem 2000;65:5420–5423.

    Article  PubMed  CAS  Google Scholar 

  37. Sengupta P, Mukhopadhyay J. Terpenoids and related compounds—VII: triterpenoids of Phyllanthus acidus Skeels. Phytochemistry 1966;5:531–534.

    Article  CAS  Google Scholar 

  38. Wada S, Iida A, Tanaka R. Screening of triterpenoids isolated from Phyllanthus flexuosus for DNA topoisomerase inhibitory activity. J Nat Prod 2001;64:1545–1547.

    Article  PubMed  CAS  Google Scholar 

  39. Martelli AM, Bortul R, Bareggi R, et al. The pro-apoptotic drug camptothecin stimulates phospholipase D activity and diacylglycerol production in the nucleus of HL-60 human promyelocytic leukemia cells. Cancer Res 1999;59:3961–3967.

    PubMed  CAS  Google Scholar 

  40. Jang DS, Cuendet M, Pawlus AD, et al. Potential cancer chemopreventive constituents of the leaves of Macaranga triloba. Phytochemistry 2004;65:345–350.

    Article  PubMed  CAS  Google Scholar 

  41. Dannenberg AJ, Altorki NK, Boyle JO, et al. Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol 2001;2:544–551.

    Article  PubMed  CAS  Google Scholar 

  42. Kniss DA, Garver CL, Perkins DJ, Zimmerman PD, Fertel RH. Taxol enhances macrophage tumoricidal activity via suppression of PGE2 biosynthesis. J Soc Gynecol Invest 1996;3:377A.

    Article  Google Scholar 

  43. Sakai K, Fukuda Y, Matsunaga S, Tanaka R, Yamori T. New cytotoxic oleanane-type triterpenoids from the cones of Liquidamber styraciflua. J Nat Prod 2004;67:1088–1093.

    Article  PubMed  CAS  Google Scholar 

  44. Mukherjee KS, Ghosh PK, Mukherjee RK. Diterpenoid quinones of Salvia lanata.Phytochemistry 1983;22:1296–1297.

    Article  CAS  Google Scholar 

  45. Simões F, Michavila A, Rodríguez B, Maria C, Alvarez G, Hasan M. A quinone methide diterpenoid from the root of Salvia moorciuftiana. Phytochemistry 1986;25:755–756.

    Article  Google Scholar 

  46. Hernández M, Esquive Bl, Cárdenas J, Rodríguez-Hahn L, Ramamoorthy T P. Diterpenoid abietane quinones isolated from Salvia regla. Phytochemistry 1987;26:3297–3299.

    Article  Google Scholar 

  47. González AG, Aguiar ZE, Luis JG, Ravelo AG, Domínguez X. Quinone methide diterpenoids from the roots of Salvia texana. Phytochemistry 1988;27:1777–1781.

    Article  Google Scholar 

  48. Slamenova D, Masterova I, Labaj J, et al. Cytotoxic and DNA-damaging effects of diterpenoid quinones from the roots of Salvia officinalis L. on colonic and hepatic human cells cultured in vitro. Basic Clin Pharmacol Toxicol 2004;94:282–290.

    PubMed  CAS  Google Scholar 

  49. Meng LH, Zhang JS, Ding J. Salvicine, a novel DNA topoisomerase II inhibitor, exerting its effects by trapping enzyme-DNA cleavage complexes. Biochem Pharmacol 2001;62:733–741.

    Article  PubMed  CAS  Google Scholar 

  50. Gu L, Xinchu W. Antioxidant activity and components of Salvia plebeia R. Br—a Chinese herb. Food Chem 2001;73:299–305.

    Article  CAS  Google Scholar 

  51. Liu J, Shen HM, Ong CN. Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG2 cells. Cancer Lett 2000;153:85–93.

    Article  PubMed  CAS  Google Scholar 

  52. Chor SY, Hui AY, To KF, et al. Anti-proliferative and pro-apoptotic effects of herbal medicine on hepatic stellate cell. J Ethnopharmacol 2005;100:180–186.

    Article  PubMed  CAS  Google Scholar 

  53. Yang LJ, Jeng CJ, Kung HN, et al. Tanshinone IIA isolated from Salvia miltiorrhiza elicits the cell death of human endothelial cells. J Biomed Sci 2005;12:347–361.

    Article  PubMed  CAS  Google Scholar 

  54. Mosaddik MA. In vitro cytotoxicity of tanshinones isolated from Salvia miltiorrhiza Bunge against P388 lymphocytic leukemia cells. Phytomedicine 2003;10:682–685.

    Article  PubMed  CAS  Google Scholar 

  55. Lee D-S, Lee SH. Biological activity of dihydrotanshinone I: effect on apoptosis. J Biosci Bioeng 2000;89:292–293.

    Article  PubMed  CAS  Google Scholar 

  56. Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 2003;63:8118–8121.

    PubMed  CAS  Google Scholar 

  57. Parker BW, Kaur G, Nieves-Neira W, et al. Early induction of apoptosis in hematopoietic cell lines after exposure to flavopiridol. Blood 1998;91:458–465.

    PubMed  CAS  Google Scholar 

  58. Hayakawa S, Saeki K, Sazuka M, et al. Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochem Biophys Res Commun 2001;285:1102–1106.

    Article  PubMed  CAS  Google Scholar 

  59. Adlakha RC, Ashorn CL, Chan D, Zwelling LA. Modulation of 4′-(9-acridinyl-amino)methanesulfon-m-anisidide-induced, topoisomerase II-mediated DNA cleavage by gossypol. Cancer Res 1989;49:2052–2058.

    PubMed  CAS  Google Scholar 

  60. Nikolovska-Coleska Z, Xu L, Hu Z, et al. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem 2004;47:2430–2440.

    Article  PubMed  CAS  Google Scholar 

  61. Motoyuki T, Kaoru K, Hironori N, Akira T, Hajime I, Hideto M. Definition of crucial structural factors of acetogenins, potent inhibitors of mitochondrial complex I. Biochim Biophys Acta 2000;1460:302–310.

    Article  Google Scholar 

  62. Inayat-Hussain SH, Osman AB, Din LB, Ali AM, Snowden RT, MacFarlane M, Cain K. Caspases-3 and-7 are activated in goniothalamin-induced apoptosis in human Jurkat T-cells. FEBS Lett 1999;456:379–383.

    Article  PubMed  CAS  Google Scholar 

  63. Alkofahi A, Rupprecht J, Smith DL, Chang CJ, McLaughlin JL. Goniothalamin and annonacin: bioactive acetogenins from Goniothamalus giganteus (Annonaceae). Experientia 1988;44:83–85.

    Article  PubMed  CAS  Google Scholar 

  64. Alkofahi A, Rupprecht J, Liu YM, Chang CJ, Smith DL, McLaughlin JL. Gigantecin: a novel antimitotic and cytotoxic acetogenin, with non adjacent tetrahydrofurane rings, from Goniothalamus giganteus (Annonaceae). Experientia 1990;46:539–541.

    Article  PubMed  CAS  Google Scholar 

  65. Fang XP, Anderson JE, Smith DL, Wood KV, McLaughlin JL. Gigantetronenin and gigantrionenin: novel cytotoxic acetogenins from Goniothalamus giganteus. J Nat Prod 1992;55:1655–1663.

    Article  PubMed  CAS  Google Scholar 

  66. Gu ZM, Fang XP, Zeng L, et al. Gonionenin: a new cytotoxic annonaceous acetogenin from Goniothalamus giganteus and the conversion of mono-THF acetogenins to bis-THF cetogenins. J Org Chem 1994;59:3472–3479.

    Article  CAS  Google Scholar 

  67. Lu Z, Yan Z, Qing Y, Gouen S, Kan H, McLaughlin JL. cis-Gigantrionenin and 4-acetyl gigantetrocin A, two new bioactive annonaceous acetogenins from Goniothalamus giganteus, and the stereochemistries of acetogenin 1,2,5-triols. Bioorg Med Chem 1996;4:1271–1279.

    Article  Google Scholar 

  68. Lu Z, Yan Z, McLaughlin JL. Gigantransenins A, B, and C, novel mono-THF acetogenins bearing trans-double bonds, from Goniothalamus giganteus (Annonaceae). Tetrahedron Lett 1996;37:5449–5452.

    Article  Google Scholar 

  69. Feras QA, Lingling R, Yan Z, McLaughlin JL. Unusual bioactive annonaceous acetogenins from Goniothalamus giganteus. Tetrahedron 1998;54:5833–5844.

    Article  Google Scholar 

  70. Feras QA, Yan Z, Lingling R, McLaughlin JL. Mono-tetrahydrofuran acetogenins from Goniothalamus giganteus. Phytochemistry 1998;49:761–768.

    Article  Google Scholar 

  71. Xin PF, Rong S, Zhe-ming G, et al. A new type of cytotoxic annonaceous acetogenin: Giganin from Goniothalamus giganteus. Bioorg Med Chem Lett 1993;3:1153–1156.

    Article  Google Scholar 

  72. Jiang Z, Chen Y, Ruo-Yun CH, De-Quan Y. Mono-tetrahydrofuran ring acetogenins from Goniothalamus donnaiensis. Phytochemistry 1997;46:327–331.

    Article  CAS  Google Scholar 

  73. Ying C, Zhong J, Ruo RC, et al. Two linear acetogenins from Goniothalamus gardneri. Phytochemistry 1998;49:1317–1321.

    Article  Google Scholar 

  74. Seidel V, Bailleul F, Waterman PG. Goniothalamusin, a linear acetogenin from Goniothalamus gardneri. Phytochemistry 1999;52:1101–1103.

    Article  CAS  Google Scholar 

  75. Jewers K, Davis JB, Dougan J, et al. Goniothalamin and its distribution in four Goniothalamus species. Phytochemistry 1972;11:2025–2030.

    Article  CAS  Google Scholar 

  76. El-Sharkawi S, Yusuf Z, Pihie AHL, Ali AM. Metabolism of goniothalamin in animal and microbial systems. Bull Chim Farmaceutica 1996;135:35–40.

    Google Scholar 

  77. Ali AM, Umar-Tsafe N, Mohamed SM, et al. Apopotosis induction in CEM-SS T-lymphoblastic leukemic cell line by goniothalamin. J Biochem Mol Biol Biophys 2001;5:253–261.

    Google Scholar 

  78. Pihie AHL, Stanslas J, Din LB. Non-steroid receptor-mediated anti-proliferative activity of styrylpyrone derivative in human breast cancer cell lines. Anticancer Res 1998;18:1739–1743.

    PubMed  CAS  Google Scholar 

  79. Ali AM, Mackeen MM, Hamidi M, et al. Cytotoxicity and electron death cell induced by goniothalamin. Planta Med 1997;63:81–83.

    Article  PubMed  CAS  Google Scholar 

  80. Lee ATC, Azimahtol HLP, Tan AN. Styrylpyrone derivatives (SPD) induces apopotosis in caspases-7-dependent manner in the human breast cancer cell line MCF-7. Cancer Cell Int 2003;3:1–8.

    Article  Google Scholar 

  81. Inayat-Hussain SH, Osman AB, Din LB, et al. Caspase-3 and-7 are activated in goniothalamin-induced apopotosis in human Jurkat T-cells. FEBS Lett 1999;456:379–383.

    Article  PubMed  CAS  Google Scholar 

  82. Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Ross D. Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells. Toxicol In Vitro 2003;17:433–439.

    Article  PubMed  CAS  Google Scholar 

  83. Lee ATC, Azimahtol HLP. Styrylpyrone derivative (SPD) induces apoptosis through the up-regulation of bax in the human breast cancer cell line MCF-7. J Biochem Mol Biol 2003;36:269–274.

    Google Scholar 

  84. Almudena B, Amparo BM, Rao SK, Cortes D. Styryl-pyrones from Goniothalamus arvensis. Phytochemistry 1998;47:1375–1380.

    Article  Google Scholar 

  85. Hisham A, Toubi M, Shuaily W, Ajitha MDB, Fujimoto Y. Cardiobutanolide, a styryl-lactone from Goniothalamus cardiopetalus. Phytochemistry 2003;62:597–600.

    Article  PubMed  CAS  Google Scholar 

  86. Hisham A, Harassi A, Shuaily W, Shizue E, Fujimoto Y. Cardiopetalolactone: a novel styryllactone from Goniothalamus cardiopetalus Tetrahedron 2000;56:9985–9989.

    Article  CAS  Google Scholar 

  87. Mu Q, Tang WD, Liu RY, et al. Constituents from the stems of Goniothalamus griffithii. Planta Med 2003;69:826–830.

    Article  PubMed  CAS  Google Scholar 

  88. Steven MC, Laily BD, Abdul L, et al. (+)Isoaltholactone: a furanopyrone isolated from Goniothalamus species. Phytochemistry 1990;29:1701–1704.

    Article  Google Scholar 

  89. Wang S, Zhang YJ, Chen RY, Yu DQ. Goniolactones A-F, six new styrylpyrone derivatives from the roots of Goniothalamus cheliensis. J Nat Prod 2002;65:835–841.

    Article  PubMed  CAS  Google Scholar 

  90. Lan YH, Chang FR, Liaw CC, Wu CC, Chiang MY, Wu YC. Digoniodiol, deoxygo-niopypyrone A, and goniofupyrone A: three new styryl-lactones from Goniothalamus amuyon. Planta Med 2005;71:153–159.

    Article  PubMed  CAS  Google Scholar 

  91. Wu YC, Fang-Rong C, Chang-Yih D, Shang-Kwei W, Tian-Shung W. Cytotoxic styrylpyrones of Goniothalamus amuyon. Phytochemistry 1992;31:2851–2853.

    Article  CAS  Google Scholar 

  92. Hasan CM, Mia MY, Rashid MA, Connolly JD. 5-Acetoxyisogoniothalamin oxide, an epoxystyryl lactone from Goniothalamus sesquipedalis. Phytochemistry 1994;37:1763–1744.

    Article  CAS  Google Scholar 

  93. Fasihuddin BA, Wan AT, Siraj O, Atan MS. 5-Acetyl goniothalamin, a styryl dihy-dropyrone from Goniothalamus uvaroides. Phytochemistry 1991;30:2430–2431.

    Article  Google Scholar 

  94. Inayat-Hussain SH, Annuar BO, Laily BD, Naoyuki T. Altholactone, a novel styryl-lactone induces apoptosis via oxidative stress in human HL-60 leukemia cells. Toxicol Lett 2002;131:153–159.

    Article  PubMed  CAS  Google Scholar 

  95. Peris E, Estornell E, Cabedo N, Cortes D, Bermejo A. 3-Acetylaltholactone and related styryl-lactones, mitochondrial respiratory chain inhibitors. Phytochemistry 2000;54:311–315.

    Article  PubMed  CAS  Google Scholar 

  96. Jerzak M, Kasprzycka M, Wierbicki P, Kotarski J, Gorski A. Apoptosis of T cells in the first trimester human deciduas. Am J Reprod Immunol 1998;40:130–135.

    PubMed  CAS  Google Scholar 

  97. Vadillo OF, Avila VMA, Guerrero HC, Arechavaleta VF, Montoya BJ. Apoptosis in trophoblast of patients with recurrent spontaneous abortion of unidentified cause. Ginecol Obstet Mex 2000;68:122–131.

    Google Scholar 

  98. Nkunya MH, Weenen H, Bray DH, Mgani QA, Mwasumbi LB. Antimalarial activity of Tanzanian plants and their active constituents: the genus UvariaPlanta Med 1991;57:341–343.

    CAS  Google Scholar 

  99. Hufford CD, Babajide O. Oguntimein Dihydrochalcones from Uvaria angolensis. Phytochemistry 1980;19:2036–2038.

    Article  CAS  Google Scholar 

  100. Mayunga HH, Weenen H, Renner C, Waibel R, Achenbach H. Benzylated dihydro-chalcones from Uvaria leptocladon. Phytochemistry 1993;32:1297–1300.

    Article  Google Scholar 

  101. Fall D, Duval RA, Gleye C, Laurens A, Hocquemiller R. Chamuvarinin, an aceto-genin bearing a tetrahydropyran ring from the roots of Uvaria chamae. J Nat Prod 2004;67:1041–1043.

    Article  PubMed  CAS  Google Scholar 

  102. Nakatani N, Ichimaru M, Moriyasu M, Kato A. Induction of apoptosis in human promyelocytic leukemia cell line HL-60 by C-benzylated dihydrochalcones, uvaretin, isouvaretin and diuvaretin. Biol Pharm Bull 2005;28:83–86.

    Article  PubMed  CAS  Google Scholar 

  103. Rivero A, Quintana J, Eiroa JL, et al. Potent induction of apoptosis by germacranolide sesquiterpene lactones on human myeloid leukemia cells. Eur J Pharmacol 2003;482:77–84.

    Article  PubMed  CAS  Google Scholar 

  104. Lee KH, Ibuka T, Huang HC. Letter: Antitumor agents XIV: molephantinin, a new potent antitumor sesquiterpene lactone from Elephantopus mollis. J Pharm Sci 1975;64:1077–1078.

    Article  PubMed  CAS  Google Scholar 

  105. Lee KH, Ibuka T, Furukawa H, Kozuka M, Wu RY, Hall IH, Huang HC. Antitumor agents XXXVIII: Isolation and structural elucidation of novel germacranolides and triterpenes from Elephantopus mollis. J Pharm Sci 1980;69:1050–1056.

    Article  PubMed  CAS  Google Scholar 

  106. Hall IH, Liou Y F, Lee KH. Antitumor agents LII: The effects of molephantinin on nucleic acid and protein synthesis of Ehrlich ascites cells. J Pharm Sci 1982;71:687–690.

    Article  PubMed  CAS  Google Scholar 

  107. Xie PD, Sang T, Gong XZ. Determination of protocatechuic acid in Blumea riparia (Bl.) DC. by RP-HPLC. Zhongguo Zhong Yao Za Zhi 2000;25:227–229.

    PubMed  CAS  Google Scholar 

  108. Kampa M, Alexaki VI, Notas G, et al. Apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res 2004;6:R63–R74.

    Article  PubMed  CAS  Google Scholar 

  109. Stagos D, Kazantzoglou G, Magiatis P, Mitaku S, Anagnostopoulos K, Kouretas D. Effects of plant phenolics and grape extracts from Greek varieties of Vitis vinifera on mitomycin C and topoisomerase I-induced nicking of DNA. Int J Mol Med 2005;15:1013–1022.

    PubMed  CAS  Google Scholar 

  110. Pandey UC, Ram PS, Palaniappan K, Herz W. Isoalantolactone derivatives and germacranolides from Blumea densiflora. Phytochemistry 1985;24:1509–1514.

    Article  CAS  Google Scholar 

  111. Wang SY, Chang HN, Lin KT, Lo CP, Yang NS, Shyur LF. Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica. J Agric Food Chem 2003;51:1506–1512.

    Article  PubMed  CAS  Google Scholar 

  112. Horinaka M, Yoshida T, Shiraishi T, et al. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene 2005;24:7180–7189.

    Article  PubMed  CAS  Google Scholar 

  113. Dassonneville L, Lansiaux A, Wattez N, et al. Cytotoxicity and cell cycle effects of the plant alkaloids cryptolepine and neocryptolepine: relation to drug-induced apoptosis. J Nat Prod 2001;64:134–135.

    Article  CAS  Google Scholar 

  114. Shi Q, Chen K, Li L, et al. Antitumor agents, 154. Cytotoxic and antimitotic flavonols from Polanisia dodecandra. J Nat Prod 1995;58:475–482.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

(2006). Plants for Chemotherapy of Neoplastic Diseases. In: Ethnopharmacology of Medicinal Plants. Humana Press. https://doi.org/10.1007/978-1-59745-160-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-160-4_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-748-8

  • Online ISBN: 978-1-59745-160-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics