Skip to main content

Age-Related Macular Degeneration

  • Chapter
Ocular Angiogenesis

Part of the book series: Opthalmology Research ((OPHRES))

  • 910 Accesses

Abstract

Age-related macular degeneration (AMD) is the leading cause of blindness in people 60 years of age or older in the Western Hemisphere (1). There are approx 15 million people affected by AMD in the United States, as AMD affects approx 18% of Americans between the ages of 65 and 74 yr and 30% of those aged 75 yr and older (2). The diagnosis of AMD is based on visual dysfunction and characteristic macular findings (3). AMD has been classified into neovascular (wet or exudative) and nonneovascular (dry) types. Neovascular AMD is less common but far more devastating than the dry type. The Beaver Dam Study demonstrated a prevalence of neovascular AMD that is approximately one-tenth the prevalence of the dry type (2). The most severe form of dry AMD is geographic atrophy, which accounts for 12 to 21% of legal blindness caused by AMD, while the neovascular form accounts for the balance (46). Neovascular AMD affects approx 1 million Americans, and each year about 200,000 new cases are diagnosed. Without treatment, most of these patients with neovascular AMD will progress to visual acuity of 20/200 or worse within 2 yr (7,t8). Even though there is clearly an association with advancing age, identifying other factors that put a patient at risk for development and progression of AMD has proven to be a difficult challenge. Several studies have demonstrated an increased risk with cigarette smoking (914), and the Rotterdam Study showed a dose—response relationship between smoking and AMD (9). There are conflicting reports on the association between AMD and diabetes, cardiovascular disease, hypercholesterolemia, hypertension, alcohol use, obesity, aspirin use, and estrogen use (15,16). Diet may play a role. The type and amount of dietary fat intake may modify risk of progression of AMD, and intake of fish, fruit, nuts, and green leafy vegetables may be protective (1719). Antioxidant intake has been proven to be beneficial in certain patients with AMD (20). Recently, there has been much interest and investigation into the role of genetic influences on AMD. Studies have demonstrated an increased risk of AMD if a first-degree family member is affected. Approximately 20% of AMD patients have a positive family history, and monozygotic twins demonstrate higher levels of concordance (2128).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klein R, Klein BE, Jensen SC, Meuer SM. The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 1997;104:7–21.

    PubMed  CAS  Google Scholar 

  2. Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 1992;99:933–943.

    PubMed  CAS  Google Scholar 

  3. Bird AC, Bressler NM, Bressler SB, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv Ophthalmol 1995;39:367–374.

    Article  PubMed  CAS  Google Scholar 

  4. Leibowitz HM, Krueger DE, Maunder LU, et al. The Framingham Eye Study Monograph: VI. Macular degeneration. Surv Ophthalmol 1980;24:428–457.

    Article  Google Scholar 

  5. Hyman LG, Lilienfeld AM, Ferris FL, Fine SL. Senile macular degeneration: a case control study. Am J Epidemiol 1983; 118:213–227.

    PubMed  CAS  Google Scholar 

  6. Ferris FL, Fine SL, Hyman L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 1984; 102:1640–1642.

    PubMed  Google Scholar 

  7. Macular Photocoagulation Study Group. Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial. Macular Photocoagulation Study Group. Arch Ophthalmol 1991; 109:1220–1231.

    Google Scholar 

  8. Macular Photocoagulation Study Group. Laser photocoagulation of subfoveal neovascular lesions of age-related macular degeneration. Updated findings from two clinical trials. Macular Photocoagulation Study Group. Arch Ophthalmol 1993; 111:1200–1209.

    Google Scholar 

  9. Vingerling JR, Hofman A, Grobbee DE, de Jong PT. Age-related macular degeneration and smoking: the Rotterdam Study. Arch Ophthalmol 1996; 114:1193–1196.

    PubMed  CAS  Google Scholar 

  10. Paetkau ME, Boyd TA, Grace M, Bach-Mills J, Winshop B. Senile disciform macular degeneration and smoking. Can J Ophthalmol 1978;13:67–71.

    PubMed  CAS  Google Scholar 

  11. Seddon JM, Willett WC, Speizer FE, Hankinson SE. A prospective study of cigarette smoking and age-related macular degeneration in women. JAMA 1996;276:1141–1146.

    Article  PubMed  CAS  Google Scholar 

  12. Christen WG, Glynn RJ, Manson JE, Ajani UA, Buring JE. A prospective study of cigarette smoking and risk of age-related macular degeneration in men. JAMA 1996;276:1147–1151.

    Article  PubMed  CAS  Google Scholar 

  13. Mitchell P, Wang JJ, Smith W, Leeder SR. Smoking and the 5-year incidence of age-related maculopathy: the Blue Mountains Eye Study. Arch Ophthalmol 2002; 120:1357–1363.

    PubMed  Google Scholar 

  14. Klein R, Klein BE, Tomany SC, Moss SE. Ten-year incidence of age-related maculopathy and smoking and drinking: the Beaver Dam Eye Study. Am J Epidemiol 2002; 156:589–598.

    Article  PubMed  Google Scholar 

  15. Klein R, Klein BE, Tomany SC, Cruickshanks KJ. The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam Eye study. Ophthalmology 2003; 110:1273–1280.

    Article  PubMed  Google Scholar 

  16. Snow KK, Seddon JM. Do age-related macular degeneration and cardiovascular disease share common antecedents? Ophthalmic Epidemiol 1999:6:125–143.

    Article  PubMed  CAS  Google Scholar 

  17. Seddon JM, Cote J, Rosner B. Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol 2003; 121: 1728–1737.

    Article  PubMed  Google Scholar 

  18. Cho E, Seddon JM, Rosner B, Willett WC, Hankinson SE. Prospective study of intake of fruits, vegetables, vitamins, and carotenoids and risk of age-related maculopathy. Arch Ophthalmol 2004; 122:883–892.

    Article  PubMed  Google Scholar 

  19. Chew EY. Age-Related Eye Disease Study Research Group. Micronutrient supplementation. Presented at AAO meeting, Subspecialty Day, New Orleans, 2004.

    Google Scholar 

  20. The AREDS Research Group. A randomized, placebocontrolled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss-AREDS Report No 8. Arch Ophthalmol 2001;l19:1417–1436.

    Google Scholar 

  21. Heiba IM, Elston RC, Klein BE, Klein R. Sibling correlations and segregation analysis of age-related maculopathy: the Beaver Dam Eye Study. Genet Epidemiol 1994; 11:51–67.

    Article  PubMed  CAS  Google Scholar 

  22. Seddon JM, Ajani UA, Mitchell BD. Familial aggregation of age-related maculopathy. Am J Ophthalmol 1997; 123:199–206.

    PubMed  CAS  Google Scholar 

  23. Klaver CCW, Wolfs RCW, Assink JJM, et al. Genetic risk of age related maculopathy. Population-based Familial Aggregation Study. Arch Ophthalmol 1998; 116:1646–1651.

    PubMed  CAS  Google Scholar 

  24. Klein M, Maudlin W, Stoumbos V. Heredity and age-related macular degeneration: observations in monozygotic twins. Arch Ophthalmol 1994; 112:932–937.

    PubMed  CAS  Google Scholar 

  25. Meyers S, Green T, Gutman F. A twin study of age-related macular degeneration. Am J Ophthalmol 1995;120:757–766.

    PubMed  CAS  Google Scholar 

  26. Seddon J, Samelson I, Page W, Neale M. Twin study of macular degeneration: methodology and application to genetic epidemiology studies. Invest Ophthalmol Vis Sci 1997;38:S676.

    Google Scholar 

  27. Tuo J, Bojanowski CM, Chan CC. Genetic factors of age-related macular degeneration. Prog Retinal Eye Res 2004;23:229–249.

    Article  CAS  Google Scholar 

  28. Abecasis GR, Yashar BM, Zhao Y, et al. Age-related macular degeneration: a high-resolution genome scan for susceptibility loci in a population enriched for late-stage disease. Am J Hum Genet 2004;74:482–494.

    Article  PubMed  CAS  Google Scholar 

  29. Green WR, Enger C. Age-related macular degeneration histopathologic studies: the 1992 Lorenz E. Zimmerman Lecture. Ophthalmology 1993; 100:1519–1535.

    PubMed  CAS  Google Scholar 

  30. Bressler NM, Silva JC, Bressler SB, et al. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. Retina 1994; 14:130–142.

    Article  PubMed  CAS  Google Scholar 

  31. Sarks SH. Aging and degeneration in the macular region: a clinicopathological study. Br J Ophthalmol 1976;60:324–341.

    Article  PubMed  CAS  Google Scholar 

  32. Green WR, Key SN. Senile macular degeneration: a histopathologic study. Trans Am Ophthalmol Soc 1977;75:180–254.

    PubMed  CAS  Google Scholar 

  33. Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 2004; 122:598–614.

    Article  PubMed  Google Scholar 

  34. Lopez PF, Sippy BD, Lambert HM, Thach AB, Hinton DR. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1996;37:855–868.

    PubMed  CAS  Google Scholar 

  35. Frank RN. Growth factors in age-related macular degeneration: pathogenic therapeutic implications. Ophthalmic Res 1997;29:341–353.

    Article  PubMed  CAS  Google Scholar 

  36. Kvanta A, Algvere P, Berglin L, Seregard S. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 1996;37:1929–1934.

    PubMed  CAS  Google Scholar 

  37. Ernst E, Hammerschmidt DE, Bagge U, Matrai A, Dormandy JA. Leukocytes and the risk of ischemic diseases. JAMA 1987;257:2318–2324.

    Article  PubMed  CAS  Google Scholar 

  38. Hageman GS, Luthert PJ, Chong NHV, et al. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Ret Eye Res 2001;20:705–732.

    Article  CAS  Google Scholar 

  39. Oh H, Takagi H, Takagi C, et al. The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1999;40:1891–1898.

    PubMed  CAS  Google Scholar 

  40. Abdelsalam A, Del Priore L, Zarbin MA. Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. Surv Ophthalmol 1999;44:1–29.

    Article  PubMed  CAS  Google Scholar 

  41. Klein R, Klein BEK, Jensen SC, Meuer SM. The 5-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 1997; 104:7–21.

    PubMed  CAS  Google Scholar 

  42. Bressler SB, Maguire MG, Bressler NM, Fine SL. The Macular Photocoagulation Study Group: relationship of drusen and abnormalities of the retinal pigment epithelium to the prognosis of neovascular macular degeneration. Arch Ophthalmol 1990; 108:1442–1447.

    PubMed  CAS  Google Scholar 

  43. Maguire MG, Bressler SB, Bressler NM, et al. for the Macular Photocoagulation Study Group. Risk factors for choroidal neovascularization in the second eye of patients with juxtafoveal or subfoveal choroidal neovascularization secondary to age-related macular degeneration. Arch Ophthalmol 1997; 115:741–747.

    Google Scholar 

  44. Yannuzzi LA, Negrao S, Iida T, et al. Retinal angiomatous proliferation in agerelated macular degeneration. Retina 2001;21:416–434.

    Article  PubMed  CAS  Google Scholar 

  45. Borrillo JL, Sivalingam A, Martidis A, et al. Surgical ablation of retinal angiomatous proliferation. Arch Ophthalmol 2003;121:558–561.

    Article  PubMed  Google Scholar 

  46. Lafaut BA, Aisenbrey S, van den Broecke C. Polypoidal choroidal vasculopathy pattern in age-related macular degeneration. Retina 2000;20:650–654.

    Article  PubMed  CAS  Google Scholar 

  47. Okubo A, Sameshima M, Uemara A. Clinicopathological correlation of polypoidal choroidal vasculopathy revealed by ultrastructural study. Br J Ophthalmol 2002;86:1093–1098.

    Article  PubMed  CAS  Google Scholar 

  48. Ciardella AP, Donsoff IM, Huang SJ, Costa DL, Yannuzzi LA. Polypoidal choroidal vasculopathy. Surv Ophthalmol 2004;49:25–37.

    Article  PubMed  Google Scholar 

  49. Spaide RF, Yannuzzi LA, Slakter JS. Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina 1995;15:100–110.

    Article  PubMed  CAS  Google Scholar 

  50. Bressler SB, Rosberger DF. Nonneovascular (nonexudative) age-related macular degeneration. In: Guyer DR, Yannuzzi LA, Chang S, Shields JA, Green WR, eds. Retina-Vitreous-Macula Vol 1. W.B. Saunders Co., Philadelphia: 1999;79–93.

    Google Scholar 

  51. Duker JS. OCT, fourth generation and beyond. Presented at AAO meeting, Subspecialty Day, New Orleans, 2004.

    Google Scholar 

  52. Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995; 113:325–332.

    PubMed  CAS  Google Scholar 

  53. Chauhan DS, Marshall J. The interpretation of optical coherence tomography images of the retina. Invest Ophthalmol Vis Sci 1999;40:2332–2342.

    PubMed  CAS  Google Scholar 

  54. Hee MR, Baumal CR, Puliafito CA, et al. Optical coherence tomography of age related macular degeneration and choroidal neovascularization. Ophthalmology 1996; 103: 1260–1270.

    PubMed  CAS  Google Scholar 

  55. Costa RA, Farah ME, Cardillo JA, Belfort R Jr. Photodynamic therapy with indocyanine green for occult subfoveal choroidal neovascularization caused by age-related macular degeneration. Curr Eye Res 2001;23:271–275.

    Article  PubMed  CAS  Google Scholar 

  56. Rogers AH, Martidis A, Greenberg PB, Puliafito CA. Optical coherence tomography findings following photodynamic therapy of choroidal neovascularization. Am J Ophthalmol 2002; 134:566–576.

    Article  PubMed  Google Scholar 

  57. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 1994;330:1029–1035.

    Article  Google Scholar 

  58. Omenn GS, Goodman GE, Thornquist M, et al. Effects of combination of beta-carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 1996;334:1150–1155.

    Article  PubMed  CAS  Google Scholar 

  59. Ho AC, Maguire MG, Yoken J, et al. Laser-induced drusen reduction improves visual function at 1 year. Ophthalmology 1999; 106:1367–1374.

    Article  PubMed  CAS  Google Scholar 

  60. Olk RJ, Friberg TR, Stickney KL, et al. Therapeutic benefits of infrared (810-nm) diode laser macular grid photocoagulation in prophylactic treatment of nonexudative age-related macular degeneration: two-year results of a randomized pilot study. Ophthalmology 1999; 106:2082–2090.

    Article  PubMed  CAS  Google Scholar 

  61. Rodanant N, Friberg TR, Cheng L, et al. Predictors of drusen reduction after subthreshold infrared (810 nm) diode laser macular grid photocoagulation for nonexudative age-related macular degeneration. Am J Ophthalmol 2002; 134:577–585.

    Article  PubMed  Google Scholar 

  62. Green WR. Clinicopathologic studies of treated choroidal neovascular membranes. A review and report of two cases. Retina 1991;11:328–356.

    Article  PubMed  CAS  Google Scholar 

  63. Miller H, Miller B, Ryan SJ. Correlation of choroidal subretinal neovascularization with fluorescein angiography. Am J Ophthalmol 1985;99:263–271.

    PubMed  CAS  Google Scholar 

  64. Miller H, Miller B, Ryan SJ. Newly formed subretinal vessels. Fine structure and fluorescein leakage. Invest Ophthalmol Vis Sci 1986;27:204–213.

    PubMed  CAS  Google Scholar 

  65. Miller H, Miller B, Ryan SJ. The role of the retinal pigment epithelium in the involution of subretinal neovascularization. Invest Ophthalmol Vis Sci 1986;27:1644–1652.

    PubMed  CAS  Google Scholar 

  66. Thach AB, Sipperley JO, Dugel PU, et al. Large-spot size transpupillary thermotherapy for the treatment of occult choroidal neovascularization associated with age-related macular degeneration. Arch Ophthalmol 2003;121:817–820.

    Article  PubMed  Google Scholar 

  67. Algvere PV, Libert C, Lindgarde G, et al. Transpupillary thermotherapy of predominantly occult choroidal neovascularization in age-related macular degeneration with 12 months follow-up. Acta Ophthalmol Scand 2003;81:110–117.

    Article  PubMed  Google Scholar 

  68. Reichel E. Transpupillary Thermotherapy. The TTT4CNV Clinical Trial. Presented at AAO meeting, Subspecialty Day, New Orleans, 2004.

    Google Scholar 

  69. Treatment of Age-related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-TAP report no. 2. Arch Ophthalmol 2001; 119:198–207.

    Google Scholar 

  70. Verteporfin in Photodynamic Therapy (VIP) Study Group. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascu-larization—Verteporfin in Photodynamic Therapy report 2. Am J Ophthalmol 2001; 131: 541–560.

    Article  Google Scholar 

  71. Blinder KJ, Bradley S, Bressler NM, et al. Effect of lesion size, visual acuity, and lesion composition on visual acuity change with and without verteporfin therapy for choroidal neovascularization secondary to age-related macular degeneration: TAP and VIP report no. 1. Am J Ophthalmol 2003;136:407–418.

    Article  PubMed  CAS  Google Scholar 

  72. Richter AM, Waterfield E, Jain AK, et al. In vitro evaluation of phototoxic properties of four structurally related benzonamic porphyrin derivatives. Photochem Photobiol 1990;52:495–500.

    PubMed  CAS  Google Scholar 

  73. Aveline B, Hasan T, Redmond RW. Photophysical and photo-sensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA). Photochem Photobiol 1994;59: 328–335.

    PubMed  CAS  Google Scholar 

  74. Richter AM, Waterfield E, Jain AK, et al. Photosensitising potency of structural analogues of benzoporphyrin derivative (BPD) in a mouse tumour model. Br J Cancer 1991;63:87–93.

    PubMed  CAS  Google Scholar 

  75. Allison BA, Pritchard PH, Levy JG. Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br J Cancer 1994;69:833–839.

    PubMed  CAS  Google Scholar 

  76. Schmidt-Erfurth U, Hasan T, Schomacker K, et al. In vivo uptake of liposomal benzoporphyrin derivative and photothrombosis in experimental corneal neovascularization. Lasers Surg Med 1995; 17:178–188.

    Article  PubMed  CAS  Google Scholar 

  77. Michels S, Schmidt-Erfurth U. Sequence of early vascular events after photodynamic therapy. Invest Ophthalmol Vis Sci 2003;44:2147–2154.

    Article  PubMed  Google Scholar 

  78. Schnurrbusch UE, Welt K, Horn L-C, et al. Histological findings of surgically excised choroidal neovascular membranes after photodynamic therapy. Br J Ophthalmol 2001; 85:1086–1091.

    Article  PubMed  CAS  Google Scholar 

  79. Ghazi NG, Jabbour NM, De La Cruz ZC, et al. Clinicopathologic studies of age-related macular degeneration with classic subfoveal choroidal neovascularization treated with photodynamic therapy. Retina 2001;21:478–486.

    Article  PubMed  CAS  Google Scholar 

  80. Schmidt-Erfurth U, Laqua H, Schlotzer-Schrehard U, et al. Histopathological changes following photodynamic therapy in human eyes. Arch Ophthalmol 2002; 120:835–844.

    PubMed  Google Scholar 

  81. Schlotzer-Schrehardt U, Viestenz A, Naumann GOH, et al. Dose-related structural effects of photodynamic therapy on choroidal and retinal structures of human eyes. Graefes Arch Clin Exp Ophthalmol 2002;240:748–757.

    PubMed  Google Scholar 

  82. Schmidt-Erfurth U, Miller J, Sickenberg M, et al. Photodynamic therapy of subfoveal choroidal neovascularization: clinical and angiographic examples. Graefes Arch Clin Exp Ophthalmol 1998;236:365–374.

    Article  PubMed  CAS  Google Scholar 

  83. Miller JW, Schmidt-Erfurth U, Sickenberg M, et al. Photodynamic therapy with verteporfin for choroidal neovascularization by age-related macular degeneration: results of a single treatment in a phase I and 2 study. Arch Ophthalmol 1999; 117:1161–1173.

    PubMed  CAS  Google Scholar 

  84. Chen JC, Marinier JA, Kergoat H, et al. Choroidal blood flow in verteporfin treatment of age related macular degeneration. Invest Ophthalmol Vis Sci 2002;43:E586.

    Google Scholar 

  85. Sternberg P, Lewis H. Photodynamic therapy for age-related macular degeneration: a candid appraisal. Am J Ophthalmol 2004;137:483–485.

    Article  PubMed  Google Scholar 

  86. Gillies MC, Simpson JM, Luo W, et al. A randomized clinical trial of a single dose of intravitreal triamcinolone acetonide for neovascular age-related macular degeneration: one-year results. Arch Ophthalmol 2003;121:667–673.

    Article  PubMed  CAS  Google Scholar 

  87. Jonas JB, Kreissig I, Hugger P, et al. Intravitreal triamcinolone acetonide for exudative age related macular degeneration. Br J Ophthalmol 2003,87:462–468.

    Article  PubMed  CAS  Google Scholar 

  88. Spaide RF, Sorenson J, Maranan L. Combined photodynamic therapy with verteporfin and intravitreal triamcinolone acetonide for choroidal neovascularization. Ophthalmology 2003; 110:1517–1525.

    Article  PubMed  Google Scholar 

  89. The Anecortave Acetate Clinical Study Group. Anecortave acetate as monotherapy for treatment of subfoveal neovascularization in age-related macular degeneration: twelvemonth clinical outcomes. Ophthalmology 2003;l10:2372–2383.

    Google Scholar 

  90. Penfold PL, Wen L, Madigan MC, et al. Triamcinolone acetonide modulates permeability and intercellular adhesion molecule-1 (ICAM-1) expression of the ECV304 cell line: implications for macular degeneration. Clin Exp Immunol 2000;121:458–465.

    Article  PubMed  CAS  Google Scholar 

  91. Kvanta A, Algvere PV, Berglin L, et al. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 1996; 37:1929–1934.

    Google Scholar 

  92. Reddy VM, Zamore RL, Kaplan HJ. Distribution of growth factors in subfoveal fibrovascular membranes in age-related macular degeneration and presumed ocular histoplasmosis syndrome. Am J Ophthalmol 1995;120:291–301.

    PubMed  CAS  Google Scholar 

  93. Amin R, Puklin JE, Frank RN. Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 1994;35:3178–3188.

    PubMed  CAS  Google Scholar 

  94. Lopez PF, Sippy BD, Lamber HM, et al. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1996;37:855–868.

    PubMed  CAS  Google Scholar 

  95. Yi X, Ogata N, Komada M, et al. Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol 1997;235:313–319.

    Article  PubMed  CAS  Google Scholar 

  96. Wada M, Ogata N, Otsuji T, et al. Expression of vascular endothelial growth factor and its receptor (KDR/flk-1) mRNA in experimental choroidal neovascularization. Curr Eye Res 1999;18:201–213.

    Article  Google Scholar 

  97. Ogata N, Yamamoto C, Miyashiro M, et al. Expression of transforming growth factor-b mRNA in experimental choroidal neovascularizarion. Curr Eye Res 1997; 16:9–18.

    Article  PubMed  CAS  Google Scholar 

  98. Amin RH, Frank RN, Eliot D, et al. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) immunoreactivity in human choroidal neovascular membranes. Invest Opthalmol Vis Sci 1995;36:S2565.

    Google Scholar 

  99. Ogata N, Matsushima M, Takada Y, et al. Expression of basic fibroblast growth factor mRNA in developing choroidal neovascularization. Curr Eye Res 1996; 15:1008–1018.

    PubMed  CAS  Google Scholar 

  100. Matsushima M, Ogata N, Takada Y, et al. Expression of fibroblast growth factor receptor 1 in experimental choroidal neovascularization with in situ hybridization. Jpn J Ophthalmol 1996;40:329–338.

    PubMed  CAS  Google Scholar 

  101. Frank RN, Amin RH, Eliott D, et al. Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol 1996;122:393–403.

    PubMed  CAS  Google Scholar 

  102. Heier JS. Anti-VEGF: Genentech-Ranibizumab. Presented at AAO meeting, Subspecialty Day, New Orleans, 2004.

    Google Scholar 

  103. Schwartz SD. Anti-VEGF: Eyetech-Macugen. Presented at AAO meeting, Subspecialty Day, New Orleans, 2004.

    Google Scholar 

  104. Submacular Surgery Trials (SST) Research Group. Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: ophthalmic findings. SST Report No. 11. Ophthalmology 2004; 111:1967–1980.

    Article  Google Scholar 

  105. Submacular Surgery Trials (SST) Research Group. Surgery for Hemorrhagic choroidal neovascular lesions of age-related macular degeneraton: ophthalmic findings. SST Report No. 13. Ophthalmology 2004; 111:1993–2006.

    Article  Google Scholar 

  106. de Juan EJr, Loewenstein A, Bressler NM, Alexander J. Translocation of the retina for management of subfoveal choroidal neovascularization, II: a preliminary report in humans. Am J Ophthalmol 1998; 125:635–646.

    Article  PubMed  Google Scholar 

  107. Fujii GY, de Juan E Jr, Pieramici DJ, et al. Inferior limited macular translocation for subfoveal choroidal neovascularization secondary to age-related macular degeneration: 1-year visual outcome and recurrence report. Am J Ophthalmol 2002; 134:69–74.

    Article  PubMed  Google Scholar 

  108. Pawlak D, Glacet-Bernard A, Papp M, Roquet W, Coscas G, Soubrane G. Limited macu-lar translocation compared with photodynamic therapy in the management of subfoveal choroidal neovascularization in age-related macular degeneration. Am Ophthalmol 2004; 137:880–887.

    Article  Google Scholar 

  109. Fujii GY, de Juan E Jr, Humayun MS, Chang TS. Limited macular translocation for the management of subfoveal choroidal neovascularization after photodynamic therapy. Am J Ophthalmol 2003;135:109–112.

    Article  PubMed  Google Scholar 

  110. Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 1993;231:635–641.

    Article  PubMed  CAS  Google Scholar 

  111. Lai JC, Lapolice DJ, Stinnett SS, et al. Visual outcomes following macular translocation with 360-degree peripheral retinectomy. Arch Ophthalmol 2002,120:1317–1324.

    PubMed  Google Scholar 

  112. Park CH, Toth CA. Macular translocation surgery with 360-degree peripheral retinectomy following ocular photodynamic therapy of choroidal neovascularization. Am J Ophthalmol 2003; 136:830–835.

    Article  PubMed  Google Scholar 

  113. Aisenbrey S, Lafaut BA, Szurman P, et al. Macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol 2002; 120: 451–459.

    PubMed  Google Scholar 

  114. Ohtsuki H, Shiraga F, Morizane Y, Furuse T, Takasu I, Hasebe S. Transposition of the anterior superior oblique insertion as a treatment for excyclotorsion induced from limited macular translocation. Am Ophthalmol 2004;137:125–134.

    Article  Google Scholar 

  115. Tennant MT, Borrillo JL, Regillo CD. Management of submacular hemorrhage. Ophthalmol Clin N Am 2002; 15:445–452.

    Article  Google Scholar 

  116. Brody BL, Gamst AC, Williams RA, et al. Depression, visual acuity, comorbidity, and disability associated with age-related macular degeneration. Ophthalmology 2001;108: 1893–1901.

    Article  PubMed  CAS  Google Scholar 

  117. Williams RA, Brody BL, Thomas RG, et al. The psychosocial impact of macular degeneration. Arch Ophthalmol 1998; 116:514–520.

    PubMed  CAS  Google Scholar 

  118. Rovner B, Casten R. Neuroticism predicts depression and disability in age-related macular degeneration. J Am Geriat Soc 2001;49:1097–1100.

    Article  PubMed  CAS  Google Scholar 

  119. Scott IU, Smiddy WE, Schiffman J, Feuer WJ, Pappas CJ. Quality of life of low-vision patients and the impact of low-vision services. Am Ophthalmol 1999; 128:54–62.

    Article  CAS  Google Scholar 

  120. Barnstable CJ, Tombran-Tink J. Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res 2004;23:561–577.

    Article  PubMed  CAS  Google Scholar 

  121. Tombran-Tink J, Lara N, Apricio SE, et al. Retinoic acid and dexamethasone regulate the expression of PEDF in retinal and endothelial cells. Exper Eye Res 2004;78:945–955.

    Article  CAS  Google Scholar 

  122. Matsuoka M, Ogata N, Otsuji T, Nishimura T, Takahashi K, Matsumura M. Expression of pigment epithelium derived factor and vascular endothelial growth factor in choroidal neovascular membranes and polypoidal choroidal vasculopathy. Br J Ophthalmol 2004;88:809–815.

    Article  PubMed  CAS  Google Scholar 

  123. Duh EJ, Yang HS, Haller JA, et al. Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol 2004;137:668–674.

    Article  PubMed  CAS  Google Scholar 

  124. Ogata N, Wada M, Otsuji T, Jo N, Tombran-Tink J, Matsumura M. Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2002;43:1168–1175.

    PubMed  Google Scholar 

  125. Ohno-Matsui K, Morita I, Tombran-Tink J, et al. Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. Cell Physiol 2001;189:323–333.

    Article  CAS  Google Scholar 

  126. Holz ER. AdPEDF.I ID Gene vector therapy (GenVec) for AMD, AdPEDF therapy for subfoveal choroidal neovascularization: preliminary phase I results. Presented at AAO meeting, Subspecialty Day, New Orleans, 2004.

    Google Scholar 

  127. Del Priore LV, Kaplan HJ, Tezel TH, Hayashi N, Berger AS, Green WR. Retinal pigment epithelial cell transplantation after subfoveal membranectomy in age-related macular degeneration: clinicopathologic correlation. Am J Ophthalmol 2001; 131:472–480.

    Article  PubMed  Google Scholar 

  128. Binder S, Stolba U, Krebs I, et al. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am J Ophthalmol 2002; 133:215–225.

    Article  PubMed  Google Scholar 

  129. Schraermeyer U, Thumann G, Luther T, et al. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats. Cell Transplant 2001;10:673–680.

    PubMed  CAS  Google Scholar 

  130. Caballero S, Sengupta N, Crafoord S, et al. The many possible roles of stem cells in age-related macular degeneration. Graefes Arch Clin Exper Ophthalmol 2004;242:85–90.

    Article  CAS  Google Scholar 

  131. Margalit E, Maia M, Weiland JD, et al. Retinal prosthesis for the blind. Surv Ophthalmol 2002;47:335–356.

    Article  PubMed  Google Scholar 

  132. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2004; 122:460–469.

    Article  PubMed  Google Scholar 

  133. Humayun MS, Weiland JD, Fujii GY, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis Res 2003;43:2573–2581.

    Article  PubMed  Google Scholar 

  134. Humayun MS, de Juan EJr. Artificial vision. Eye 1998; 12:605–607.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hagedorn, C.L., Adelman, R.A. (2006). Age-Related Macular Degeneration. In: Tombrain-Tink, J., Barnstable, C.J. (eds) Ocular Angiogenesis. Opthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-047-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-047-8_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-514-9

  • Online ISBN: 978-1-59745-047-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics