Skip to main content

Advertisement

Log in

The many possible roles of stem cells in age-related macular degeneration

  • Review
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228

    CAS  PubMed  Google Scholar 

  2. Coffey PJ, Girman S, Wang SM, Hetherington L, Keegan DJ, Adamson P, Greenwood J, Lund RD (2002) Long-term preservation of cortically dependent visual function in RCS rats by transplantation. Nat Neurosci 5: 53–56

    Article  CAS  PubMed  Google Scholar 

  3. Davidson JM, Zoia O, Liu JM (1993) Modulation of transforming growth factor-beta 1 stimulated elastin and collagen production and proliferation in porcine vascular smooth muscle cells and skin fibroblasts by basic fibroblast growth factor, transforming growth factor-alpha, and insulin-like growth factor-I. J Cell Physiol 155: 149–156

    CAS  PubMed  Google Scholar 

  4. Frank RN (1997) Growth factors in age-related macular degeneration: pathogenic and therapeutic implications. Ophthalmic Res 29: 341–353

    CAS  PubMed  Google Scholar 

  5. Girman SV, Wang S, Lund RD (2003) Cortical visual functions can be preserved by subretinal RPE cell grafting in RCS rats. Vision Res 43: 1817–1827

    Article  CAS  PubMed  Google Scholar 

  6. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8: 607–612

    Article  CAS  PubMed  Google Scholar 

  7. Hartnett ME, Lappas A, Darland D, McColm JR, Lovejoy S, D’Amore PA (2003) Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Exp Eye Res 77: 593–599

    Article  CAS  PubMed  Google Scholar 

  8. Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J (2002) Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 33: 1362–1368

    Article  PubMed  Google Scholar 

  9. Hori J, Ng TF, Shatos M, Klassen H, Streilein JW, Young MJ (2003) Neural progenitor cells lack immunogenicity and resist destruction as allografts. Stem Cells 21: 405–416

    PubMed  Google Scholar 

  10. Keegan DJ, Kenna P, Humphries MM, Humphries P, Flitcroft DI, Coffey PJ, Lund RD, Lawrence JM (2003) Transplantation of syngeneic Schwann cells to the retina of the rhodopsin knockout (rho(-/-)) mouse. Invest Ophthalmol Vis Sci 44: 3526–3532

    Article  PubMed  Google Scholar 

  11. Kern TS, Engerman RL (1996) Capillary lesions develop in retina rather than cerebral cortex in diabetes and experimental galactosemia. Arch Ophthalmol 114: 306–310

    CAS  PubMed  Google Scholar 

  12. Klassen H, Imfeld KL, Ray J, Young MJ, Gage FH, Berman MA (2003) The immunological properties of adult hippocampal progenitor cells. Vision Res 43: 947–956

    Article  CAS  PubMed  Google Scholar 

  13. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7: 430–436

    PubMed  Google Scholar 

  14. Kruse FE, Volcker HE (1997) Stem cells, wound healing, growth factors, and angiogenesis in the cornea. Curr Opin Ophthalmol 8: 46–54

    CAS  Google Scholar 

  15. Kruse FE, Rohrschneider K, Volcker HE (1999) Multilayer amniotic membrane transplantation for reconstruction of deep corneal ulcers. Ophthalmology 106: 1504–1510; discussion 1511

    CAS  Google Scholar 

  16. la Cour M, Kiilgaard JF, Nissen MH (2002) Age-related macular degeneration: epidemiology and optimal treatment. Drugs Aging 19: 101–133

    PubMed  Google Scholar 

  17. Lawrence JM, Sauve Y, Keegan DJ, Coffey PJ, Hetherington L, Girman S, Whiteley SJ, Kwan AS, Pheby T, Lund RD (2000) Schwann cell grafting into the retina of the dystrophic RCS rat limits functional deterioration. Royal College of Surgeons. Invest Ophthalmol Vis Sci 41: 518–528

    CAS  PubMed  Google Scholar 

  18. Lawrence JM, Keegan DJ, Muir EE, Coffey PJ, Rogers JH, Wilby MJ, Fawcett JW, Lund RD (2003) Transplantation of Schwan cell line clones secreting GDNF or BDNF into the retina of the dystropic Royal College of Surgeons rat prolongs visual function. Invest Ophthalmol Vis Sci (in press)

  19. Lund RD, Adamson P, Sauve Y, Keegan DJ, Girman SV, Wang S, Winton H, Kanuga N, Kwan AS, Beauchene L, et al (2001) Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proc Natl Acad Sci U S A 98: 9942–9947

    Article  CAS  PubMed  Google Scholar 

  20. Lund RD, Kwan AS, Keegan DJ, Sauve Y, Coffey PJ, Lawrence JM (2001) Cell transplantation as a treatment for retinal disease. Prog Ret Eye Res 20: 415–449

    Article  CAS  Google Scholar 

  21. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–1201

    Article  CAS  PubMed  Google Scholar 

  22. Mizumoto H, Mizumoto K, Shatos MA, Klassen H, Young MJ (2003) Retinal transplantation of neural progenitor cells derived from the brain of GFP transgenic mice. Vision Res 43: 1699–1708

    Article  PubMed  Google Scholar 

  23. Otani A, Takagi H, Oh H, Koyama S, Matsumura M, Honda Y (1999) Expressions of angiopoietins and Tie2 in human choroidal neovascular membranes. Invest Ophthalmol Vis Sci 40: 1912–1920

    CAS  PubMed  Google Scholar 

  24. Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, Pellegrini G (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72: 1478–1485

    CAS  PubMed  Google Scholar 

  25. Roy S, Cagliero E, Lorenzi M (1996) Fibronectin overexpression in retinal microvessels of patients with diabetes. Invest Ophthalmol Vis Sci 37: 258–266

    Google Scholar 

  26. Sauve Y, Girman SV, Wang S, Keegan DJ, Lund RD (2002) Preservation of visual responsiveness in the superior colliculus of RCS rats after retinal pigment epithelium cell transplantation. Neuroscience 114: 389–401

    Article  CAS  PubMed  Google Scholar 

  27. Sauve Y, Lu B, Lund RD (2003) The rrelationship between full field electoretinogram and perimetry-like visual thresholds in RCS rats during photoreceptor degeneration and rescue by cell transplants. Vision Res (in press)

  28. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106: 571–578

    CAS  PubMed  Google Scholar 

  29. Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103: 49–62

    CAS  PubMed  Google Scholar 

  30. Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB (2003) The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Opthalmol Vis Sci 44:4908–4913

    Article  Google Scholar 

  31. Sengupta N, Caballero S, W SE, Mames RN, Guthrie SM, Grant MB (2003) Hemangioblast activity of stem cells as promoted by injury and modulated by nitric oxide in a model of retinal neovascularization. Paper presented at ARVO Annual Meeting (Association for Research in Vision and Ophthalmology, Fort Lauderdale, FL)

  32. Sengupta N, Caballero S, Mames RN, Scott EW, Grant MB (2004) Preventing stem cell incorporation into aberrant ocular neovascularization. Paper presented at Keystone Symposium: Stem Cells (Keystone, CO)

    Google Scholar 

  33. Shatos M, Mizumoto K, Mizumoto H, Kurimoto Y, Klassen H, Young MJ (2001) Multipotent stem cells from the brain and retina of green mice. e-biomed: J Regenerative Med 2

  34. Shirakawa K, Shibuya M, Heike Y, Takashima S, Watanabe I, Konishi F, Kasumi F, Goldman CK, Thomas KA, Bett A, et al (2002) Tumor-infiltrating endothelial cells and endothelial precursor cells in inflammatory breast cancer. Int J Cancer 99: 344–351

    Article  CAS  PubMed  Google Scholar 

  35. Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SC (2001) Suppression of interleukin 1alpha and interleukin 1beta in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol 85: 444–449

    Article  CAS  Google Scholar 

  36. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5: 434–438

    Article  CAS  PubMed  Google Scholar 

  37. Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343: 86–93

    Article  CAS  PubMed  Google Scholar 

  38. Tseng SC, Prabhasawat P, Barton K, Gray T, Meller D (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116: 431–441

    CAS  Google Scholar 

  39. Van Hoffelen SJ, Young MJ, Shatos MA, Sakaguchi DS (2003) Incorporation of murine brain progenitor cells into the developing mammalian retina. Invest Ophthalmol Vis Sci 44: 426–434

    Article  PubMed  Google Scholar 

  40. Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH (2000) Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci 16: 197–205

    Article  CAS  Google Scholar 

  41. Zhang ZG, Zhang L, Jiang Q, Chopp M (2002) Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90: 284–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support: The Juvenile Diabetes Research Foundation International; NIH grants EY012601 and EY007739.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria B. Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caballero, S., Sengupta, N., Crafoord, S. et al. The many possible roles of stem cells in age-related macular degeneration. Graefe's Arch Clin Exp Ophthalmol 242, 85–90 (2004). https://doi.org/10.1007/s00417-003-0813-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-003-0813-7

Keywords

Navigation