Skip to main content

Abstract

The immobilization of enzymes is a technique extensively studied since the late 1960s (Silman and Katchalski, 1966). The knowledge base accumulated on enzyme and cells immobilization studies has grown to very large proportions (Klibanov, 1983; Ariga et al., 1993; Crumbliss et al., 1993; Champagne et al., 1994). This wealth of information is one of the primary reasons for the present advances in enzyme engineering. The introduction of immobilized enzyme systems into commercial use, which was slower than predicted, has been the result of numerous factors, such as the long time required for approval of new processes for use in food applications, the need to control microbial contamination in biological reactor systems and some enzyme characteristics that limit the economic success of the immobilization process. The engineering of enzymes with better characteristics will overcome some of the problems encountered that have prevented commercial processes from developing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adami, A., Cavazzoni, V., Trezzi, M. and Craveri, R. (1988) Cellobiose hydrolysis by Trichosporon pullulons in calcium alginate. Biotechnol. Bioeng., 32, 391–402.

    Article  CAS  Google Scholar 

  • Akita, H. (1996) Recent advances in the use of immobilized lipases directed toward the asymmetric syntheses of complex molecules. Biocat. Biotransf., 13, 141–56.

    Article  CAS  Google Scholar 

  • Akita, H., Umezawa, I., Matsukura, H. and Oishi, T. (1989) A lipid-lipase aggregate as a new type of immobilized enzyme. Chem. Pharm. Bull., 39, 1632–33.

    Article  Google Scholar 

  • Akita, H., Umezawa, I., Tisnadjaja, D., Matsukura, H. and Oishi, T. (1993) Enantioselective acetylation of an a-hydroxy ester by using ether-linked lipid-lipase aggregates in organic solvents. Chem. Pharm. Bull., 41, 16–20.

    Article  CAS  Google Scholar 

  • Amarant, T. and Bohak, Z. (1981) Immobilization of protein as a tool for studying primary structure around their cysteinyl residues. Appt. Biochem. Biotechnol., 6, 237–45.

    Article  CAS  Google Scholar 

  • Ariga, O., Kato, M., Sano, T., Nakazawa, Y. and Sano, Y. (1993) Mechanical and kinetic properties of PVA hydrogel immobilizing beta-galactosidase. J. Ferment. Bioeng., 76, 203–10.

    Article  CAS  Google Scholar 

  • Atlow, S.C., Bonadonna-Aparo, L. and Klibanov, A.M. (1984) Dephenolization of industrial waste waters catalyzed by polyphenol oxidase. Biotechnol. Bioeng., 26, 599–603.

    Article  CAS  Google Scholar 

  • Audet, P., Paquin, C. and Lacroix, C. (1988) Immobilization growing lactic acid bacteria with x-carrageenan-locust bean gum gel. Appt. Microbiol. Biotechnol., 29, 11–19.

    Article  CAS  Google Scholar 

  • Audet, P., Paquin, C. and Lacroix, C. (1989) Sugar utilization and acid production by free and entrapped cells of Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaris, and Lactococcus lattis subsp. lattis in a whey permeate medium. Appt. Environ. Microbiol., 55, 185–91.

    CAS  Google Scholar 

  • Audet, P., Paquin, C. and Lacroix, C. (1990) Batch fermentations with a mixed culture of lactic acid bacteria immobilized separately in x-carrageenan locust bean gum gel beads. Appt. Microbiol. Biotechnol., 32, 662–73.

    Article  CAS  Google Scholar 

  • Babuchowski, A., Hammond, E.G. and Glatz, B.A. (1993) Survey of propionibacteria for ability to produce propionic acid. J. Food Product., 56, 493–6.

    CAS  Google Scholar 

  • Bajpai, P. and Margaritis, A. (1987a) The effect of temperature and pH on ethanol production by free and immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract. Biotechnol. Bioeng., 30, 306–13.

    Article  CAS  Google Scholar 

  • Bajpai, P. and Margaritis, A. (1987b) Kinetics of ethanol production by immobilized Kluyveromyces marxianus cells at varying sugar concentrations of Jerusalem artichoke juice. Appt. Microbiol. Biotechnol., 26, 447–9.

    CAS  Google Scholar 

  • Bajpai, R., Thompson, J.E. and Davison, B.H. (1990) FBR, with extractive fermentation to remove butanol. Appl. Biochem. Biotechnol., 24, 25–31.

    Article  Google Scholar 

  • Banat, I.M., Nigram, P. and Marchant, R. (1992) Isolation and thermotolerant yeasts growing at 52 °C and producing ethanol at 45 °C and 50 °C. World J. Microbiol. Biotechnol., 8, 259–63.

    Article  CAS  Google Scholar 

  • Barbotin, J.N., Saucedo, J.E.N., Bazinet, C. et al. (1992) Immobilization of whole cells and somatic embryons: coating process and cell-matrix interactions in SYNSEEDS, Applications of Synthetic Seeds to Crop Improvement (ed. K. Redenbauch), CRC Press, Boca Raton, pp. 66–103.

    Google Scholar 

  • Barron, N., Marchant, R., McHale, L. and McHale, A.P. (1994) Growth of thermotolerant ethanol-producing strain of Kluyeromyces marxianus on cellulosic-containing media. Biotech. Lett., 16, 625–30.

    Article  CAS  Google Scholar 

  • Beavan, N., Zawadzki, B., Droniuk, R., Lawford, H. and Fein, J. (1989) Comparative performance trials with yeast and Zymomonas for fuel alcohol production from corn. Appt. Biochem. Biotechnol., 20/21, 319–26.

    Article  Google Scholar 

  • Bender, M.L. (1987) Kinetic studies of immobilized a-chymotripsin In aprotic solvents, in Methods in Enzymology, Vol. 135, Part B (ed. K. Mosbach), Academic Press, Orlando, pp. 537–56.

    Google Scholar 

  • Benito, G.G., Ozores, M. and Pena, M. (1994) Continuous glycerol production in a packed-bed bioreactor with immobilized cells of Saccharomyces cerevisiae. Bioresoúrce Technol., 49, 209–212.

    Google Scholar 

  • Beunink, J. and Rehm, H.J. (1988) Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system. Appi. Microbiol. Biotechnol., 29, 72–80.

    Article  CAS  Google Scholar 

  • Beunink, J. and Rehm, H.J. (1990) Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a coimmobilized mixed culture system. Appi. Microbiol. Biotechnol., 34, 108–15.

    CAS  Google Scholar 

  • Bickerstaff, G.F. (1982) Applications of immobilized enzymes to fundamental studies on enzyme structure and function, In Topics in Enzyme and Fermentation Biotechnology 9 (ed. A. Wiseman), Ellis Harwood, New York, pp. 162–175.

    Google Scholar 

  • Binot, R.A. (1983) Biométhanisation en lit fluidisé de microorganismes immobilisés. Thèse de Doctorat en Sciences Agronomiques, Université Catholique de Louvain, Belgium.

    Google Scholar 

  • Bishop, P.L. and Kinner, N.E. (1986) Aerobic fixed-film processes, in Biotechnology, Vol. 8 (eds H.J. Rehm and G. Reed), VCH, Weinheim, pp. 113–176.

    Google Scholar 

  • Bisping, B. and Rehm, H.J. (1986) Glycerol production by cells of Saccharomyces cerevisiae, immobilized in sintered glass. Microbiol. Biotechnol., 23, 174–9.

    Article  CAS  Google Scholar 

  • Bowers, L.D. (1986) Applications of immobilized biocatalysts in chemical analysis. Anal. Chem., 58, 513–520.

    Article  Google Scholar 

  • Boyaval, P. and Goulet, J. (1988) Optimal conditions for production of lactic acid from cheese whey permeate by Caalginate-entrapped Lactobacillus helveticus. Enzyme Microbiol. Technol., 10, 725–7

    Article  CAS  Google Scholar 

  • Brady, D., Marchant, R., McHale, L. and McHale, A.P. (1994) Production of ethanol by thermotolerant yeast Kluyeromyces marxianus IMB3 during growth on lactose-containing media. Biotech. Lett., 16, 737–740.

    Article  CAS  Google Scholar 

  • Brink, L.E.S. and Tramper, J. (1986) Design of an organic-liquid-phase/immobilized-cell reactor for the microbial epoxidation of propene, In Biocatalysis in Organic Media (eds C. Laane, J. Tramper and M.D. Lilly), Elsevier Science Publishers, Amsterdam, pp. 133–146.

    Google Scholar 

  • Brodelius, P. and Nilsson, K. (1980) Entrapment of plant cells In different matrices. A comparative study. FEES Lett., 122, 312–328.

    Article  CAS  Google Scholar 

  • Brodelius, P., Deus, B., Mosbach, K. and Zenk, M.H. (1979) Immobilized plant cells for the production and transformation of natural products. FEES Lett., 103, 93–99.

    Article  CAS  Google Scholar 

  • Brouers, M. (1986) Hydrogen production by immobilized Scenedesmus cells and ammonia production by immobilized Anábaena filaments, in Process Engineering Aspects of Immobilized Cell Systems, Manchester, England, 1984, Institute of Chemical Engineers, Rugby, pp. 272–276.

    Google Scholar 

  • Bucke, C. (1987) Cell immobilization In calcium alginate. Meth. Enzymol., 135, 175–195.

    Article  CAS  Google Scholar 

  • Rumpus, J.A. and Brock, B.J. (1989) Biodegradation of crystal violet by the white rot fungus Phanerochete cryssosporium. Appt. Environ. Microbiol., 54, 1141–1150.

    Google Scholar 

  • Burgess, D.J. (1994) Complex coacervation: microcapsule formation, in Macromolecular Complexes in Chemistry and Biology (eds P. Dubin, J. Bock, R. Davis, D.N. Schulz and C. Thies), Springer-Verlag, Hiedelberg, pp. 285–300.

    Chapter  Google Scholar 

  • Cachon, R., Molin, P. and Diviès C. (1995) Modeling of continuous Ph-stat stirred tank reactor with Lactococcus lattis spp lattis bv. diacetylactis immobilized in calcium alginate gel beads. Biotechnol. Bioeng., 47, 567–574.

    Article  CAS  Google Scholar 

  • Campbell, W.R., Lamptey, J. and Murray, M.Y. (1985) Ethanol production in a surface-immobilized yeast, packed-bed bioreactor, in Bioenergy 84, Vol. III, Biomass Conversion, (eds H. Egneus and A. Ellegard), Elsevier Applied Science, London, pp. 220–28.

    Google Scholar 

  • Carr, P.W. and Bowers, L.D. (1980) Immobilized Enzymes in Analytical and Clinical Chemistry. J. Wiley and Sons, New York.

    Google Scholar 

  • Carta, G., Gainer, J.L. and Benton, A.H. (1991) Enzymatic synthesis of esters using an immobilized lipase. Biotechnol. Bioeng., 37, 1004–1009.

    Article  CAS  Google Scholar 

  • Carta, G., Gainer, J.L. and Gibson, M.E. (1992) Synthesis of esters using a nylon-immobilized lipase in batch and continuous reactors. Enzyme Microbiol. Technol., 14, 904–910.

    Article  CAS  Google Scholar 

  • Castillo, E. and Casas, L.T. (1990) Reutilization of free and immobilized Kluyveromyces fragilis yeast cells with a controlled permeabilization treatment, in Physiology of Immobilized Cells (eds J.A.M. de Bont, J. Visser, B. Mattiasson and J. Tramper), Elsevier Science Publishers, Amsterdam, pp. 213–231.

    Google Scholar 

  • Champagne, C.P. and Côté, C.B. (1987) Cream fermentation by immobilized lactic acid bacteria. Biotechnol. Lett., 9, 329–332.

    Article  Google Scholar 

  • Champagne, C.P., Baillargeon, C.B. and Goulet, J. (1989) Whey fermentation by immobilized cells of Propionibacterium shermanii. J. Appl. Bacteriol., 66, 175–1

    Article  CAS  Google Scholar 

  • Champagne, C.P., Morin, N., Couture, R. et al. (1992) The potential of immobilized cell technology to produce freeze-dried, phage-protected cultures of Lactobacillus lattis. Food Res. Int., 25, 419–431.

    Article  Google Scholar 

  • Champagne, C.P., Girard, F. and Rodriguez, N. (1993) Production of concentrated suspensions of thermophilic lactic acid bacteria in calcium-alginate beads. Int. Dairy J., 3, 257–265.

    Article  CAS  Google Scholar 

  • Champagne, C.P., Lacroix, C. and Sodini-Gallot, I. (1994) Immobilized cell technologies for the dairy industry. Cr. Rev. Biotechnol., 14, 109–134.

    Article  CAS  Google Scholar 

  • Champluvier, B., Kamp, B. and Rouxhet, P.G. (1988) Immobilization of beta-galactosidase retained in yeast: adhesion of the cells on a support. Appl. Microbiol. Biotechnol., 27, 464–472.

    CAS  Google Scholar 

  • Champluvier, B., Marchai, F. and Rouxhet, P.G. (1989) Immobilization of lactase in yeast cells retained in a glass wool matrix. Enzyme Microbiol. Technol., 11, 422–431.

    Article  CAS  Google Scholar 

  • Chamy, R., Nunes, M.J. and Lema, J.M. (1990) Optimization of the hardening treatment of S. cerevisiae bioparticles. Enzyme Microbiol. Technol., 12, 749–754.

    Article  CAS  Google Scholar 

  • Chang, P.S., Rhee, J.S. and Kim, J.J. (1991) Continuous glycerolysis of olive oil by Chromobacterium viscosum lipase immobilized on liposome in reversed micelles. Biotechnol. Bioeng., 38, 1159–1165.

    Article  CAS  Google Scholar 

  • Charles, M. and Phillips, J. (1985) Combined immobilized enzyme/cell systems, in Comprehensive Biotechnology, Vol. 2 (eds M. Moo-Young, C.W. Robinson and J.A. Howell), Pergamon Press, New York, pp. 225–229.

    Google Scholar 

  • Chavasit, V., Kienzle-Sterzer, C. and Torres, J.A. (1988) Formation and characterization of an insoluble polyelectrolyte complex: chitosan-polyacrylic acid. Polym. Bull. (Berlin), 19, 223–229.

    Article  CAS  Google Scholar 

  • Chevalier, P. and De la Noue, J. (1985) Efficiency of the immobilized hyperconcentrated algae on ammonia and orthophosphate removal from wastewaters. Biotechnol. Lett., 7, 395–400.

    Article  CAS  Google Scholar 

  • Chiancone, E. and Gattoni, M. (1987) Use of immobilized subunits for the purification of oligomeric and self-associating proteins, in Methods in Enzymology, Vol. 135, Part B, (ed. K. Mosbach), Academic Press, Orlando, pp. 484–512.

    Google Scholar 

  • Chibata, I., Tosa, T. and Sato, T. (1979) Microbial Technology, 2nd edn (eds H.J. Peppler and D. Perlman), Academic Press, San Diego.

    Google Scholar 

  • Chibata, I., Tosa, T. and Sato, T. (1986) Biocatalysis: immobilized cells and enzymes. J. Macromol. Catalysis, 37, 1–24.

    Article  CAS  Google Scholar 

  • Chibata, I., Tosa, T., Sato, T. and Takata, I. (1987) Immobilization of cells in carrageenan. Meth. Enzymol., 135, 189–198.

    Article  CAS  Google Scholar 

  • Chu, C.H., Sakiyama, T. and Yano, T. (1995) pH-sensitive swelling polyelectrolyte complex gel prepared from xanthan and chitosan. Biosci. Biotech. Biochem., 59, 717–719.

    Article  CAS  Google Scholar 

  • Chu, C.H., Kumagai, H. and Nakamura, K. (1996) Application of polyelectrolyte complex gel composed of xanthan and chitosan to the immobilization of Corynebacterium glutamicum. J. Appl. Polym. Sci., 60, 1041–1047.

    Article  CAS  Google Scholar 

  • Compere, A.L. and Griffith, W.L. (1981) Microorganism immobilization, U.S. patent 4, 287, 305 (Sept. 1).

    Google Scholar 

  • Crécchio, C., Ruggiero, P. and Pizzigallo, M.D.R. (1995) Polyphenoloxidases immobilized in organic gels: properties and applications in the detoxification of aromatic compounds. Biotechnol. Bioeng., 48, 585–591.

    Article  Google Scholar 

  • Crescenzi, V., Imbriaco, D., Velasquez, C.L., Dentini, M. and Ciferri, A. (1995) Novel types of polysaccharide assemblies. Macromol. Chem. Phys., 196, 2873–2880.

    Article  CAS  Google Scholar 

  • Cross, J.S. and Clausen, E.C. (1993) Effects of organic buffers on batch fermentations of Zymomonas mobilis in a synthetic and complex medium. Biomass Energ., 4, 277–281.

    Article  CAS  Google Scholar 

  • Cross, J.S., Vega, J.L., Clausen, E.C. and Gaddy, J.L. (1988) Performance of a biofilm reactor with Zymomonas mobilis for ethanol production. 196th ACS National Meeting, Los Angeles, California, Sept. 25-30.

    Google Scholar 

  • Cross, J.S., Vega, J.L. and Clausen, E.C. (1993) Performance of a cross-linked immobilized cell reactor with Zymomonas mobilis using synthetic and complex media for ethanol production. Biomass Energ., 4, 283–291.

    Article  CAS  Google Scholar 

  • Crumbliss, A.L., Stonehuerner, J.G. and Henkens, R.W. (1993) Carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utilizing immobilized horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood. Biosensor Bioelectronics, 8, 331–339.

    Article  CAS  Google Scholar 

  • Cruz, R., Batistela, J.C. and Wosiacki, G. (1981) Microbial alfa-galactosidase for soymilk processing. J. Food Sci., 46, 1196–1204.

    Article  CAS  Google Scholar 

  • Daly, M.M. and Knorr, D. (1988) chitosan-alginate complex coacervate capsules: effects of calcium chloride, plasticizers, and polyelectrolytes on mechanical stability. Biotechnol. Prog., 4, 76–95.

    Article  CAS  Google Scholar 

  • Danzing, J., Tischer, W. and Wandrey, C. (1995) Continuous enzyme-catalyzed production of 6-aminopenicillanic acid and product concentration by reverse osmosis. Chem. Eng. Technol., 18, 256–262.

    Article  Google Scholar 

  • Daugulis, A.J., Brown, N.M., Cluett, W.R. and Dunlop, D.B. (1981) Production of ethanol by adsorbed yeast cells. Biotechnol. Lett., 3, 651–659.

    Article  CAS  Google Scholar 

  • Davis, S. and Burns, R.G. (1990) Decolorization of phenolic effluents by soluble and immobilized phenol oxidase. Appt. Microbiol. Biotechnol., 32, 721–726.

    Article  CAS  Google Scholar 

  • Davison, B.H. (1989) Dispersion and holdup in a three-phase fluidized bed. Appl. Biochem. Biotechnol., 20/21, 449–453.

    Article  Google Scholar 

  • Decleire, M., Van Huynh, N., Motte, J.C. and De Cat, W. (1985) Hydrolysis of whey by whole cells of Kluyveromyces bulgaricus immobilized in calcium alginate gels and In hen white. Appt. Microbiol. Biotechnol., 22, 438–445.

    CAS  Google Scholar 

  • De la Noue, J. and Brasseras, A. (1989)Biotreatment of anaerobically digested swine manure with microalgae. Biol. Wastes, 29, 17–31.

    Article  Google Scholar 

  • De la Noue, J. and Pruix, D. (1988) Biological tertiary treatment of urban wastewater with chitosan-immobilized Phormidium. Appt. Microbiol. Biotechnol., 29, 292–297.

    Google Scholar 

  • Dinelli, D. (1972) Fiber-entrapped enzymes. Process Biochem., 7, 9–15.

    CAS  Google Scholar 

  • Doubradi, V., Hjdu, J., Bot, G. and Friedrich, P. (1980) Structural changes in glycogen phosphorylase as revealed by cross-linking with bifunctional diimidates: phosphodephospho hybrid and phosphorylase A. Biochemistry, 19, 2295–302.

    Article  Google Scholar 

  • Dubay, A.K., Bisaria, V.S., Mukhopadhyay, S.N. and Ghose, T.K. (1989) Stabilization of restriction endonuclease Bam HI by cross-linking reagents. Biotechnol. Bioeng., 33, 1311–1320.

    Article  Google Scholar 

  • Dubin, P.L., Gao, J. and Mattison, K.W. (1994) Protein purification by selective phase separation with polyelectrolytes. Sep. Purif. Meth., 23, 1–7.

    Article  CAS  Google Scholar 

  • Dumitriu, S. (1991) Processes with immobilized enzymes and cells, in Bioconversion of Waste Materials to Industrial Products (ed. A.M. Martin), Elsevier Applied Science, London, New York, pp. 64–115.

    Google Scholar 

  • Dumitriu, S. and Chornet, E. (1996a) Functional versatility of polyionic hydrogels, in Chitin Enzymology, Vol. 2 (ed. R.A.A. Muzzarelli), Atec Edizioni, Italy, pp. 543–564.

    Google Scholar 

  • Dumitriu, S. and Chornet, E. (1996b) Polyionic hydrogels as supports for enzyme immobilization, in Chitin Enzymology, Vol. 2 (ed. R.A.A. Muzzarelli), Atec Edizioni, Grottammare, Italy, pp. 527–42.

    Google Scholar 

  • Dumitriu, S., Magny, P., Montane, D., Vidal, P.F. and Chornet, E. (1994) Polyionic hydrogels obtained by complexation between xanthan and chitosan: their properties as supports for enzyme immobilization. J. Bioactive Compat. Polym., 9, 184–209.

    Article  CAS  Google Scholar 

  • Durand, G. and Monann, P. (1974) Serie Syntheses Bibliographiques, No. 5, CDIUPAAPRIA, Massy, Paris.

    Google Scholar 

  • Ergan, F., Trani, M. and André, G. (1990) Production of glycerides from glycerol and fatty acid by immobilized lipases in non-aqueous media. Biotechnol. Bioeng., 35, 195–200.

    Article  CAS  Google Scholar 

  • Evnin, L.B. and Craik, C.S. (1988) Development of an efficient method for generating and screening active trypsin and trypsin variants. Ann. N. Y. Acad. Sci., 542, 61–7.

    Article  CAS  Google Scholar 

  • Fernandez-Lafuente, R., Rosell, C.M., Rodriguez, V. and Guisan, J.M. (1995) Strategies for stabilization by intramolecular crosslinking with bifunctional reagents. Enzyme Microbiol. Technol., 17, 517–23.

    Article  CAS  Google Scholar 

  • Finley, J.W., Stanely, W.L. and Watters, G.G. (1977) Removal of chill haze from beer with papain immobilized on chitin. Biotechnol. Bioeng., 19, 1895–903.

    Article  CAS  Google Scholar 

  • Fleming, M., Barron, N., McHale, L., Marchant, R. and McHale, A.P. (1993) Studies on the growth of thermotolerant yeast strain, Kluyeromyces marxianus IMB3 on sucrose-containing media. Biotechnol. Lett., 15, 1195–8.

    Article  CAS  Google Scholar 

  • Fukuda, H. (1980) Polyelectrolyte complexes of chitosan with sodium carboxymethylcellulose. Bull. Chem. Soc. Jpn., 53, 837–40.

    Article  CAS  Google Scholar 

  • Galazzo, J.L. and Bailey, J.E. (1990) Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol. Biotechnol. Bioeng., 36, 417–25.

    Article  CAS  Google Scholar 

  • Ganapathi, S., Butterfield, D.A. and Bhattacharyya, D. (1995) Flat-sheet and hollow fiber membrane bioreactors: a study of the kinetics and active site conformational changes of immobilized papain including sorption studies of reaction constituents. J. Chem. Technol. Biotechnol., 64, 157–64.

    Article  CAS  Google Scholar 

  • Gencer, M.A. (1981) Ethanol fermentation in a yeast immobilized tubular fermenter, Ph.D. thesis, Drexel University, USA.

    Google Scholar 

  • Gersberg, R.M. and Allen, D.W. (1984) Phosphorus uptake by Klebsiella pneumoniae and Acinetobacter calcoaceticus, in Proceedings of IAWPRC Conference on Enhanced Biological Phosphorus Removal from Waste Water, Paris, pp. 146-51.

    Google Scholar 

  • Ghose, T.K. and Tyagi, R.D. (1979) Rapid fermentation of cellulose hydrolysate. I: Batch vs. continuous systems. Biotechnol. Bioeng., 21, 1387–95.

    Article  CAS  Google Scholar 

  • Ghose, T.K. and Bandyopadhyay, K.K. (1980) Rapid ethanol fermentation in immobilized yeast cell reactor. Biotechnol. Bioeng., 22, 1489–96.

    Article  CAS  Google Scholar 

  • Gilson, C.D. and Thomas, A. (1993) A novel fluidized bed bioreactor for fermentation of glucose to ethanol using alginate immobilized yeast. Biotechnol. Technol., 7, 397–400.

    Article  CAS  Google Scholar 

  • Gite, S. and Shankar, V. (1993) Preparation and properties of RNase Ti immobilized on aminoethyl Bio-Gel P-2. J. Biotechnol., 28, 339–48.

    Article  CAS  Google Scholar 

  • Gite, S., Reddy G. and Shankar, V. (1992a) Active-site characterization of Si nuclease. I. Affinity purification and influence of amino-group modification. Biochem. J., 285, 489–95.

    CAS  Google Scholar 

  • Gite, S., Reddy G. and Shankar, V. (1992b) Active-site characterization of Si nuclease. II. Involvement of histidine in catalysis. Biochem. J., 288, 571–83.

    CAS  Google Scholar 

  • Glosset, G.P., Cobb, J.T. and Shah, Y.T. (1974) Study of performance of a tubular membrane reactor for an enzyme catalyzed reaction. Biotechnol. Bioeng., 16, 345–51.

    Article  Google Scholar 

  • Godla, F., Casas, C., Castellano, B. and Sola, C. (1987) Immobilized cells behaviour of carrageenan entrapped yeast during continuous ethanol fermentation. Appl. Microbiol. Bioeng., 30, 836–40.

    Google Scholar 

  • Godla, F., Casas, C. and Sola, C. (1987) Mathematical modelisation of a packed-bed reactor performance with immobilized yeast for ethanol fermentation. Biotechnol: Bioeng., 30, 836–43.

    Article  Google Scholar 

  • Gombin, D., Klamar G., Toth, M. and Szajani, B. (1994) Production of ethanol from thinned starch. Hungarian J. Ind. Chem., 22, 273–7.

    CAS  Google Scholar 

  • Green, J.H. and Kramer, A. (1979) Food Processing Waste Management. AVI Publishing Co., Westport, CT.

    Google Scholar 

  • Groot, W.J., Schoutens, G.H., Van Beelen, P.N., Van den Oever, C.E. and Kossen, N.W.F. (1984) Increase of substrate conversion by pervaporation in the continuous butanol fermentation. Biotechnol. Lett., 6, 789–92.

    Article  CAS  Google Scholar 

  • Grzywnowicz, K., Greppin, H., Brzyska, M. and Labarzewski, J. (1983) Changes in activity of soluble and immobilized peroxidases after treatment by various proteases and some metal ions. J. Moles. Cat., 80, 117–23.

    Article  Google Scholar 

  • Guenette, M. and Duvnjak, Z. (1996) Wood blocks as a carrier for Saccharomyces cerevisiae used in the production of ethanol and fructose. Chem. Eng. J. Biochem. Eng. J., 61, 233–40.

    Article  CAS  Google Scholar 

  • Guiseley, K.B. (1989) Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme Microbiol. Technol., 11, 706–11.

    Article  CAS  Google Scholar 

  • Guitonas, A., Paschalidis, G. and Zoubpulis, A. (1994) Treatment of strong wastewaters by fixed bed anaerobic reactors with organic support. Water Sci. Technol., 29, 257–63.

    CAS  Google Scholar 

  • Hackel, U., Klein, J., Meguet, R. and Wagner, F. (1975) Immobilization of microbial cells in polymeric matrices. Eur. J. Appi. Microbiol., 1, 291–302.

    Article  Google Scholar 

  • Hang, Y.D.; Hamamei, H. and Woodams, E.E. (1989) Production of L(+)lactic acid by Rhizopus orizae immobilized in calcium alginate gels. Biotechnol. Lett., 11, 1198–204.

    Google Scholar 

  • Hashimoto, S. and Furukawa, K. (1987) Immobilization of activated sludge by PVA-boric acid method. Biotechnol. Bioeng., 30, 52–9.

    Article  CAS  Google Scholar 

  • Hayashi, T. and Ikada, Y. (1990a) Protease immobilization onto polyacrolein microspheres, Biotechnol. Bioeng., 35, 518–23.

    Article  CAS  Google Scholar 

  • Hayashi, T. and Ikada, Y. (1990b) Lipoprotein lipase immobilization onto polyacrolein microspheres. Biotechnol. Bioeng., 36, 593–600.

    Article  CAS  Google Scholar 

  • Hills, D.J. and Dykstra, K. (1980) Anaerobic digestion of cannery tomato solid wastes. J. Environ. Eng. Div., ASCE 106 (EE2).

    Google Scholar 

  • Hirano, S., Mizutani, C., Yamaguchi, R. and Miura, D. (1978) Formation of the polyelectrolyte complexes of some acidic glycosaminoglycans with partially N-acetylated chitosans. Biopolymers, 17, 805–10.

    Article  CAS  Google Scholar 

  • Hunik, J.H., Bos, C.G., van den Hoogen, M.P., De Gooijer, D.C. and Tramper, J. (1994) Co-immobilization of Nitrosomonas europaea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in x-carrageenan gel beads. Biotechnol. Bioeng., 43, 1153–62.

    Article  CAS  Google Scholar 

  • Ibrekk, H.O., Molvaer, J. and Faafeng, B. (1991) Nutrient loading to Norwegian coastal waters and its contribution to the pollution of the North Sea. Water Sci. Technol., 24, 239–49.

    CAS  Google Scholar 

  • Ikeda, S., Kumagai, H., Sakiyama, T., Chu, C.H. and Nakamura, K. (1995) Method for analyzing pH-sensitive swelling of amphoteric hydrogels—Application to a polyelectrolyte complex gel prepared from’ xanthan and chitosan. Biosci. Biotechnol. Biochem., 59, 1422–7.

    Article  CAS  Google Scholar 

  • Itoyama, K., Tokura, S. and Hayashi, T. (1994) Lipoprotein lipase immobilization onto porous chitosan beads. Biotechnol. Prog., 10, 225–9.

    Article  CAS  Google Scholar 

  • Jain, D. and Ghose, T.K. (1984) Cellobiose hydrolysis using Pichia etchellsii cells immobilized in calcium alginate. Biotechnol. Bioeng., 26, 340–8.

    Article  CAS  Google Scholar 

  • Jeanfils, J. and Thomas, D. (1986) Culture and nitrite uptake in immobilized Scenedesmus obliquus. Appl. Microbial. Biotechnol., 24, 417–22.

    Article  CAS  Google Scholar 

  • Kana, K., Kanellaki, M., Papadimitriou, A., Psar-anos, C. and Koutinas, A. (1989a) Immobilization of Saccharomyces cerevisiae on γ-alumina pellets and its ethanol production in glucose and raisin extract fermentation. J. Ferment. Bioeng., 68, 213–15.

    Article  CAS  Google Scholar 

  • Kana, K., Kanellaki, M., Psarianos, C. and Koutinas, A. (1989b) Ethanol producion by Saccharomyces cerevisiae immobilized on mineral kissiris. J. Ferment. Bioeng., 68, 144–7.

    Article  CAS  Google Scholar 

  • Kanekar, P. and Sarnaik, S. (1991) An activated sludge process to reduce pollutional load of a dye-industry waste. Environ. Pollution, 70, 27–33.

    Article  CAS  Google Scholar 

  • Kanekar, P. and Sarnaik, S. (1995) Microbial process for treatment of phenol bearing dye-industry effluent in a fixed film bioreactor. J. Environ. Sci. Health, A30, 1817–26.

    CAS  Google Scholar 

  • Kargi, F. and Shuler, M.L. (1980) An evaluation of various flocculants for the recovery of biomass grown on poultry waste, in Agricultural Wastes (ed. T.R. Miles), Applied Science Publishers, London.

    Google Scholar 

  • Karube, I. (1989) Bioelectric cells, in Biomass Handbook (eds O. Kitani and C.W. Hall), Gordon and Breach, New York, pp. 809-18.

    Google Scholar 

  • Kasche, V. (1989) Protease in peptide synthesis, in Proteolytic Enzymes. A Practical Approach (eds R.J. Beynon and J.S. Bons), IRL Press, Oxford University Press, Oxford, New York, Tokyo, pp. 140.

    Google Scholar 

  • Kaul, R., Adlercreutz, P. and Mattiasson, B. (1987) Co-immobilization—an alternative to biocatalysis in organic media, in Biocatalysis in Organic Media (eds C. Laane, J. Tramper and M.D. Lilly), Studies in Organic Chemistry, Vol. 29, Elsevier, Amsterdam, pp. 107-14.

    Google Scholar 

  • Kautola, H. and Linko, Y.Y. (1989) Fumaric acid production from xylose by immobilized Rhizopus arrhizus cells. Appl. Microbial. Biotechnol., 31, 448–52.

    Article  CAS  Google Scholar 

  • Kaya, V.M. and Picard, G. (1995) The viability of Scenedesmus bicellularis cells immobilized an alginate screens following nutrient starvation in air at 100% relative humidity. Biotechnol. Bioeng., 46, 459–64.

    Article  CAS  Google Scholar 

  • Kaya, V.M. and Picard, G. (1996) Stability of chitosan gel as entrapment matrix of viable Scenedesmus bicellularis cells immobilized on screens for teriary treatment of wastewater. Bioresource Technol., 56, 147–55.

    Article  CAS  Google Scholar 

  • Kayem, G.J. and Rouxhet, P.G. (1983) Adsorption of colloidal hydrous alumina on yeast cells. J. Chem. Soc. Faraday Trans. 7, 79, 561–70.

    Article  CAS  Google Scholar 

  • Kearney, L., Upton, M. and McLaughlin, A. (1990) Enhanching the viability of Lactobacillus plantarum inocülum by immobilizing the cells in calcium alginate beads incorporating cryoprotectants. Appt. Environ. Microbial., 56, 3112–20.

    CAS  Google Scholar 

  • Keenan, J.D. and Kormi, I. (1977) Methane fermentation of brewery by-products, Biotechnol. Bioeng., 19, 867–78.

    Article  CAS  Google Scholar 

  • Kerel, S.F., Libicki, S.B. and Robertson, C.R. (1985) The immobilization of whole cells engineering principles. Chem. Eng. Sci., 10, 1321–30.

    Google Scholar 

  • Kierstan, M. and Bucke, C. (1977) The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol. Bioeng., 19, 387–96.

    Article  CAS  Google Scholar 

  • Kikuchi, Y. and Fukuda, H. (1974) Polyelectrolyte complexes of sodium dextran sulfate with chitosan. Makromol. Chem., 175, 3593–6.

    Article  CAS  Google Scholar 

  • Kikuchi, Y. and Noda, A. (1976) Polyelectrolytic complexes of heparin with chitosan. J. Appi. Polym. Sci., 20, 2561–72.

    Article  CAS  Google Scholar 

  • Kim, S.K. and Rha, C.K. (1989) chitosan for the encapsulation of mammalian cell culture, in Chitin and chitosan (eds G.S. Braek, T. Anthonsen and P. Sandford), Elsevier Applied Science, London, pp. 617-21.

    Google Scholar 

  • Kimura, Y., Tanaka, A., Sonomoto, K., Nihira, T. and Fukui, S. (1983) Application of immobilized lipase to hydrolysis of triacylglyceride. Eur. J. Appi. Microbiol. Biotechnol., 17, 107–12.

    Article  CAS  Google Scholar 

  • Klein, J., Havkel, U., Schara, P. and Eng, H. (1979) Polymer networks for entrapment of microorganisms. Angew. Makromol. Chem., 76/77, 329–41.

    Article  CAS  Google Scholar 

  • Klein, J., Becke, J.W., Kressdorf, B., Steinert, H.J. and Vorlop, K.D. (1984) Matrix development for specific requirements, in 3rd European Congress of Biotechnology, Vol. 4, VCH, Weinheim, p. 383.

    Google Scholar 

  • Klibanov, A.M. (1983) Immobilized enzymes and cells as practical catalysts. Science, 219, 722–30.

    Article  CAS  Google Scholar 

  • Klibanov, A.M. and Morris, E.D. (1981) Horseradish peroxidase for the removal of carcinogenic aromatic amines from water. Enzyme Microbiol. Technol., 3, 119–22.

    Article  CAS  Google Scholar 

  • Klibanov, A.M., Alberti, B.N., Morris, E.D. and Felshim, Z.M. (1980) Enzymatic removal of toxic phenols and anilines from waste waters. J. Appi. Biochem., 2, 414–21.

    CAS  Google Scholar 

  • Kobayashi, H. and Suzuki, H. (1972) Decomposition of raffinose by alpha-galactosidase of mold. II. Formation of mold pellet and its enzyme activity. J. Ferment. Technol., 50, 625–32.

    CAS  Google Scholar 

  • Kokufuka, E., Shimohashi, M. and Nakamura, I. (1988) Simultaneously occurring nitrification and denitrfication under oxygen gradient by polyelectrolyte complexcoimmobilized Nitrosomonas europaea and Paracoccus denitrificants cells. Biotechnol. Bioeng., 31, 382–4.

    Article  Google Scholar 

  • Koshiro, S., Sonomoto, K., Tanaka, A. and Fukui, S. (1985) Stereoselective esterification of dl-menthol by polyurethane-entrapped lipase in organic solvent. J. Biotechnol., 2, 47–57.

    Article  CAS  Google Scholar 

  • Kosugi, Y. and Suzuki, H. (1992) Functional immobilization of lipase eliminating lipolyses product inhibition. Biotechnol. Bioeng., 40, 369–74.

    Article  CAS  Google Scholar 

  • Kosugi, Y., Tanaka, H. and Tomizuka, N. (1990) Continuous hydrolysis of oil by immobilized lipase in a contracurrent reactor. Biotechnol. Bioeng., 36, 617–22.

    Article  CAS  Google Scholar 

  • Kurosawa, H. and Tanaka, H. (1990) Advances In immobilized cell culture: development of coimmobilized mixed culture system of aerobic and anaerobic micro-organisms. Process Biochem., Dec., pp. 189-96.

    Google Scholar 

  • Kurosawa, H., Ishikawa, H. and Tanaka, H. (1988) L-Lactic acid production from starch by coimmobilized mixed culture system of Aspergillus awamori and Streptococcus lactic. Biotechnol. Bioeng., 31, 183–7.

    Article  CAS  Google Scholar 

  • Kurosawa, H., Nomura, N. and Tanaka, H. (1989) Ethanol production from starch by a coimmobilized mixed culture system of Aspergillus awamori and Saccharomyces cerevisiae. Biotechnol. Bioeng., 33, 716–23.

    Article  CAS  Google Scholar 

  • Lamptey, J. (1983) Production of ethanol in an immobilized-yeast, packed-bed bioreactor, Ph.D. thesis, University of Waterloo, Ontario, Canada.

    Google Scholar 

  • Lawford, G.R., Lavers, B.H., Good, D., Charley, R.R. and Fein, J. (1983) Zymomonas ethanol fermentations: biochemistry and bioengineering, in International Symposium on Ethanol from Biomass, Royal Society Canada, Ottawa, Canada, pp. 482-506.

    Google Scholar 

  • Lee, G.K. and Long, M.E. (1974) US Patent 3939041.

    Google Scholar 

  • Lee, S.-W., Ebata, T., Liu, Y.-C. and Tanaka, H. (1993) Co-immobilization of three strains of microorganisms and its application in ethanol production from raw starch under sterile conditions. J. Ferment. Bioeng., 75, 36–48.

    Article  CAS  Google Scholar 

  • Leonowicz, A., Sarkar, J.M. and Bollog, J.M. (1988) Improvement in stability of an immobilized fungal lactase. Appi. Microbiol. Biotechnol., 29, 129–35.

    Article  CAS  Google Scholar 

  • Leuba, J.L. and Widmer, F. (1977) Immobilization of the ß-galactosidase from A. niger on chitosan. J. Solid Phase Biochem., 2, 257–69.

    Article  CAS  Google Scholar 

  • Lewis, V.P. and Yang, S.T. (1992) Continuous propionic acid fermentation by immobilized Propionibacterium acidipropionici in a novel packed-bed bioreactor. Biotechnol. Bioeng., 40, 465–71.

    Article  CAS  Google Scholar 

  • Lilly, M.D. and Woodley, J.M. (1985) Biocatalytic reactions involving water-insoluble organic compounds, in Biocatalysts in Organic Synthesis (eds J. Tramper, H.C. van der Plas and P. Linko), Elsevier Science Publishers, London, pp. 179-92.

    Google Scholar 

  • Lin, Y.F. and Chen, K.C.: (1995) Denitrification and methanogenesis in a co-immobilized mixed culture system. Water Res., 29, 35–43.

    Article  CAS  Google Scholar 

  • Linko, P., Poutanen, K., Weckstron, L. and Linko, Y.Y. (1980) Preparation and kinetic behavior of immobilized whole cell biocatalysts. Biochimie, 62, 387–98.

    Article  CAS  Google Scholar 

  • Liu, W.H., Wang, S.D. and Su, Y.C. (1978) Preparation and application of immobilized glucose oxidase of Pullularia pullulons. Proc. Nati. Sci. Council, 2, 275–82.

    CAS  Google Scholar 

  • Lloyd-George, I. and Chang, T.M.S. (1993) Free and microencapsulated Erwinia herbicola for the production of tyrosine. Artif. Cells Immob. Biotechnol., 21, 323–33.

    Article  CAS  Google Scholar 

  • Lloyd-George, I. and Chang, T.M.S. (1995) Characterization of free and alginate-polylysinealginate microencapsulated Erwinia herbicola for the conversion of ammonia, pyruvate, and phenol into L-tyrosine. Biotechnol. Bioeng., 48, 706–14.

    Article  CAS  Google Scholar 

  • Lortie, R., Trani, M. and Ergan, F. (1993) Kinetic study of the lipase-catalyzed synthesis of triolein. Biotechnol. Bioeng., 41, 1021–26.

    Article  CAS  Google Scholar 

  • Malcata, F.X. and Hill, C.G. (1991) Use of a lipase immobilized in a membrane reactor to hydrolyze the glycerides of butteroil. Biotechnol. Bioeng., 38, 853–68.

    Article  CAS  Google Scholar 

  • Malcata, X.F., Garcia, H.S., Hill, C.G. and Amundson, C.H. (1992a) Hydrolysis of butteroil by immobilized lipase using a hollow-fiber reactor: Part. I. Lipase adsorption studies. Biotechnol. Bioeng., 39, 647–57.

    Article  CAS  Google Scholar 

  • Malcata, X.F., Hill, C.G. and Amundson, C.H. (1992b) Hydrolysis of butteroil by immobilized lipase using a hollow-fiber reactor: Part. II. Uniresponse kinetic studies. Biotechnol. Bioeng., 39, 984–1001.

    Article  CAS  Google Scholar 

  • Mansfeld, J., Forster, M., Schellenberger, A. and Dautzenberg, H. (1991) Immobilization of invertase by encapsulation in polyelectrolyte complexes. Enzyme Microbiol. Technol., 13, 240–4.

    Article  CAS  Google Scholar 

  • Mansfeld, J., Forster, M., Hoffmann, T. and Schellenberger, A. (1995) Coimmobilization of Yarrowia lipolytica cells and invertase in polyelectrolyte complex microcapsules, Enzyme Microbiol. Technol., 17, 11–17.

    Article  CAS  Google Scholar 

  • Margaritis, A. and Bajpai, P. (1982) Ethanol production from Jerusalem artichoke (Helianthus tuberosus) using Kluyveromyces marxianus and Saccharomyces rosei. Biotechnol. Bioeng., 24, 941–53.

    Article  CAS  Google Scholar 

  • Margaritis, N. and Bajpai, P. (1983) Effect of sugar concentration in Jerusalem artichoke extract on using Kluyveromyces marxianus growth and ethanol production. Appt. Environ. Microbiol., 45, 723–5.

    CAS  Google Scholar 

  • Martinek, K. and Moshaev, V.V. (1985) Immobilization of enzymes: an approach to fundamental studies in biochemistry, in Advances in Enzymology, Vol. 57 (ed. A. Meister), John Wiley&Sons, New York, pp. 179-99.

    Google Scholar 

  • Martinsen, A., Skjak-Braek, G. and Smidsord, O. (1989) Alginate as immobilization material I. Correlation between chemical and physical properties of alginate beads. Biotechnol. Bioeng., 33, 79–88.

    Article  CAS  Google Scholar 

  • McGhee, J.E., St Julian, G. and Detroy, R.W. (1982) Ethanol production by immobilized S. cerevisiae, S. uvarum and Z. mobilis. Biotechnol. Bioeng., 24, 1155–63.

    Article  CAS  Google Scholar 

  • McKnight, C.A., Ku, A. and Goosen, M.F.A. (1988) Synthesis of chitosan-alginate microcapsule membranes. J. Bioact. Comp. Polym., 3, 334–55.

    Article  CAS  Google Scholar 

  • Miethling, R., Hecht, V. and DeckÏŽer, W.D. (1983) Microbial degradation of quinoline: kinetic studies with Comamonas acidovorans DSM 6426. Biotechnol. Bioeng., 42, 589–95.

    Article  Google Scholar 

  • Mireles, C., Martino, M., Bouzas, J. and Torres, J.A. (1992) Complex formation of chitosan and naturally occurring polyanions, in Advances in Chitin and chitosan (eds C.J. Brine, P.A. Sansford and J.P. Zikakis), Elsevier Applied Science, Amsterdam, pp. 506-12.

    Google Scholar 

  • Mitsutomi, M., Uchida, Y. and Ohtakara, A. (1985) Immobilization of thermostable a-galactosidase from Pycnoporus cinnabarinus on chitin and some properties of the immobilized enzyme. J. Ferment. Technol., 63, 325–9.

    CAS  Google Scholar 

  • Monsan, P. and Combes, D. (1988) Enzyme stabilization by immobilization, in Methods in Enzymology (ed. K. Mosbach), Vol. 137, Academic Press, New York, p. 584.

    Google Scholar 

  • Morin, N., Benfer-Cardou, M. and Champagne, C.P. (1992) Production of Lactococcus lattis biomass by immobilized cell technology. J. Ind. Microbiol., 9, 131–5.

    Article  Google Scholar 

  • Mustranta, A., Forssell, P. and Poutanen, K. (1993) Applications of immobilized lipases to transesterification and esterification reactions in nonaqueous systems. Enzyme Microbiol. Technol., 15, 133–43.

    Article  CAS  Google Scholar 

  • Muzzarelli, R.A. (1980) Immobilization of enzymes on chitin and chitosan. Enzyme Microbiol. Technol., 2, 177–84.

    Article  CAS  Google Scholar 

  • Myima, N.Y.O. and Cloete, T.E. (1995) Growth and phosphate uptake of immobilized Acinetobacter cells suspended in activated sludge mixed liquor. Water Res., 29, 2461–6.

    Article  Google Scholar 

  • Nasri, M. and Thomas, D. (1987) Immobilization of the restriction endonucleases Pvu II and Hind IП. Appl. Biochem. Biotechnol., 15, 119–26.

    Article  CAS  Google Scholar 

  • Natthew, H.W., Salley, S.O., Peterson, W.D. and Klein, M.D. (1993) Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol. Prog., 9, 510–19.

    Article  Google Scholar 

  • Niederauer, M.Q. and Glatz, C.E. (1994) Model of the polyelectrolyte precipitation of genetically eningeering enzymes processing charged polypeptide tails. Pure Appl. Chem., 31, 127–35.

    Google Scholar 

  • Nilsson, K.G.I. (1986) A comparison of the enzyme catalyzed formation of peptides and oligosaccharides in various hydroorganic solutions using the nonequilibrium approach, in Biocatalysis in Organic Media (eds C. Laane, J. Tramper and M.D. Lilly), Elsevier Science Publishers, London, pp. 369-74.

    Google Scholar 

  • Nolan, A.M., Barron, N., Brady, S. et al. (1994) Ethanol production at 45 °C by an alginate-immobilized strain of Kluyeromyces marxianus following growth on glucose-containing media. Biotechnol. Lett., 16, 849–52.

    Article  CAS  Google Scholar 

  • Northon, S. (1992) Etude de la production d’acide lactique par fermentation continue du perméat de lactosérum à l’aide d’une souche de Lactobacillus helveticus immobilisée. Ph.D. dissertation, Université Laval, Quebec, Canada.

    Google Scholar 

  • Northon, S. and Vuillemard, J.C. (1994) Food bioconversions and metabolite production using immobilized cell technology. Cr. Rev. Biotechnol., 14, 193–24.

    Article  Google Scholar 

  • Ogbonna, J.C., Amano, Y. and Nakamura, K. (1989) Elucidation of optimum conditions for immobilization of viable cells by using calcium alginate. J. Ferment. Bioeng., 67, 92–8.

    Article  CAS  Google Scholar 

  • Olzewski, J. and Wasserman, B.P. (1986) Effect of glutaraldehyde on the activity of some DNA restriction endonuclease. Appl. Biochem. Biotechnol., 13, 29–38.

    Article  Google Scholar 

  • Otero, C.(Pastor, E., Fernandez, V.M. and Ballesteros, A. (1990) Influence of the support on the reaction course of tributyrin hydrolysis catalyzed by soluble and immobilized lipases. Appi. Biochem. Biotechnol., 23, 237–47.

    Article  CAS  Google Scholar 

  • Painter, H.A. (1977) Biotechnology of waste water treatment. Prog. Water Tehcnol., 8, 8–29.

    Google Scholar 

  • Philips, C.R. and Poon, Y.C. (1988) Immobilization of Cells. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Playne, M.J. (1985) Propionic and butyric acids, in Comprehensive Biotechnology, Vol. 3 (ed. M. Moo-Young), Pergamon, New York, pp. 731-59.

    Google Scholar 

  • Pommerening, K., Ristau, O., Rein, H., Dautzenberg, H. and Loth, F. (1983) Immobilisierung von Protein durch ein neues Verfahren der Mikroverkapselung. Biomed. Biochem. Acta., 42, 813–23.

    CAS  Google Scholar 

  • Poncelet, D., Lencki, R., Beaulieu, C. et al. (1992) Production of alginate beads by emulsification/internal gelation-methodology. Appt. Microbiol. Biotechnol., 38, 39–45.

    CAS  Google Scholar 

  • Prévost, H. (1987) Pré-fermentation du lai en continu à l’aide de bactéries lactiques incluses. Application à la production de yaourt et de fromages frais. Ph.D. dissertation, Université de Bourgogne, Dijon, France.

    Google Scholar 

  • Prévost, H. and Diviès, C. (1987) Fresh fermentation cheese production with continuous pre-fermented milk by a mixed culture of mesophilic streptococci entrapped in Ca-alginate. Biotechnol. Lett., 9, 789–94.

    Article  Google Scholar 

  • Prévost, H. and Diviès, C. (1992) Cream fermentation by a mixed culture of Lactococci entrapped In two-layer calcium alginate gel beads. Biotechnol. Lett., 14, 583–8.

    Article  Google Scholar 

  • Price, E.C. and Cheremisinoff, P.N. (1981) Biogas. Production and Utilization. Ann Arbor Science Publisher, Ann Arbor MI, pp. 69.

    Google Scholar 

  • Rao, B.Y.K., Godbole, S.S. and D’souza, S.F. (1988) Preparation of lactose free milk by fermentation using immobilized Saccharomyces fragilis. Biotechnol. Lett., 10, 427–32.

    Article  CAS  Google Scholar 

  • Reddy, L.G. (1989) Immobilization of enzymes: purification and immobilization of SI nuclease, Ph.D. thesis, University of Poona, Pure, India.

    Google Scholar 

  • Reddy, L.G. and Shankar, V. (1993) Immobilized nucleases. Cr. Rev. Biotechnol., 13, 255–73.

    Article  CAS  Google Scholar 

  • Reynolds, J.H. (1974) Immobilization alpha-galactosidase continuous flow reactor. Biotechnol. Bioeng., 16, 135–42.

    Article  CAS  Google Scholar 

  • Riordan, C., Love, G., Barron, N. et al. (1996) Production of ethanol from sucrose at 45 °C by alginate-immobilized preparations of thermotolerant yeast strain Kluyveromyces maxianus IMB3. Bioresource Technol., 55, 171–3.

    Article  CAS  Google Scholar 

  • Ristau, O., Pommerening, K., Jung, C., Rein, H. and ScheleÏ„, W. (1985) Aktivitatseigenschaften von Urease in Mikrokapseln. Biomed. Biochem. Acta., 44, 1105–11.

    CAS  Google Scholar 

  • Roca, E., Flores, J., Nunes, M.J. and Lema, J.M. (1996) Ethanolic fermentation by immobilized Saccharomyces cerevisiae in a semipilot pulsing packed-bed bioreactor. Enzyme Microbiol. Technol., 19, 132–9.

    Article  CAS  Google Scholar 

  • Rogers, P.L., Lee, K.J. and Tribe, D.E. (1979) Kinetics of alcohol production by Zymomonas mobilis at high sugar concentration. Biotechnol. Lett., 2, 165–70.

    Article  Google Scholar 

  • Rosario, E. and Pamatong, F. (1985) Continuous-flow fermentation of banana fruit pulp sugar into ethanol by carrageenan-immobilized yeast. Biotechnol. Lett., 7, 819–20.

    Article  Google Scholar 

  • Rossi, J., Gobetti, M. and Soccio, P. (1990) Milk prefermentation process in fresh cheese manufacture. I. Study of immobilized lactic acid bacteria cells. Siena Tecnica Lattiero-Casearia, 41, 401–13.

    Google Scholar 

  • Roukas, T. (1994) Ethanol production from nonsterilized carob pod extract by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. Biotechnol. Bioeng., 43, 189–201.

    Article  CAS  Google Scholar 

  • Roy, D., Goulet, J. and LeDuy, A. (1987) Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. J. Dairy Sci., 70, 50–111.

    Article  Google Scholar 

  • Ruggiero, P., Sarkar, J.-M. and Bollag, J.M. (1989) Detoxification of 2, 4-dichlorophenol by a lactase immobilized on soil or clay. Soil Sci., 147, 361–70.

    Article  CAS  Google Scholar 

  • Saida, T., Michiki, H., Miyakawa, H. et al. (1985) EtOH production from cellulosics, in Bioenergy 84, Vol. III, Biomass Conversion, (eds H. Egneus and A. Ellegard), Elsevier Applied Science, London, pp. 212-20.

    Google Scholar 

  • Sakurai, H., Lee, H.W., Sato, S., Mukataka, S. and Takahashi, J. (1989) Gluconic acid production at high concentration by Aspergillus niger immobilized on a nonwoven fabric. J. Ferment. Bioeng., 67, 404–12.

    Article  CAS  Google Scholar 

  • Sarkar, J.-M., Leonowicz, A. and Bollag, J.M. (1989) Immobilization of enzymes on clays and soils. Soil Biol. Biochem., 21, 223–30.

    Article  CAS  Google Scholar 

  • Scott, C.D. (1987) Immobilized cells. A review of recent literature. Enzyme Microbiol. Technol., 9, 66–75.

    Article  CAS  Google Scholar 

  • Sharma, B.P., Bayley, L’F and Messing, R.A. (1986) Immobilized biomaterials—technology and applications. Angew. Chem. Int. Ed. Engl., 21, 469–75.

    Google Scholar 

  • Sheih, J. and Glatz, C.E. (1994) Precipitation of proteins with polyelectrolytes: role of polymer molecular weight, in Macromolecular Complexes in Chemistry and Biology (eds P. Dubin, J. Bock, R. Davis, D.N. Schulz and C. Thies), Springer-Verlag, Heidelberg, pp. 273-84.

    Google Scholar 

  • Shiraishi, F., Kawakami, K., Tamura, A., Tsuruda, S. and Kusunoki, K. (1989a) Continuous production of free gluconic acid by Gluconobacter suboxydans IFO 3290 immobilized by adsorption on ceramic honeycomb monolith: effect of reactor configuration on further oxydation of gluconic acid to keto-gluconic acid. Appl. Microbiol. Biotechnol., 31, 445–50.

    Article  CAS  Google Scholar 

  • Shiraishi, F., Kawakami, K., Tamura, A., Tsuruda, S. and Kusunoki, K. (1989b) Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith. Biotechnol. Bioeng., 33, 1413–21.

    Article  CAS  Google Scholar 

  • Siiman, I.H. and Katchalski, E. (1966) Water-insoluble derivatives of enzymes, antigens, and antibodies. Ann. Rev. Biochem., 35, 873–91.

    Article  Google Scholar 

  • Smidsord, O. and Haug, A. (1972) Dependence upon gel-sol state of the ion-exchange properties of alginates. Acta Chem. Stand., 26, 2063–72.

    Article  Google Scholar 

  • Smiley, K.L., Hensley, D.E. and Gasdorf, H.J. (1976) Alpha-galactosidase production and use in a hollow-fiber reactor. Appi. Environ. Microbiol., 31, 615–23.

    CAS  Google Scholar 

  • Stanley, W.L., Watters, G.G., Chan, B. and Mercer, J.M. (1975) Lactase and other enzymes bound to chitin with glutaraldehyde. Biotechnol. Bioeng., 17, 315–21.

    Article  CAS  Google Scholar 

  • Stanley, W.L., Watters, G.G., Kelly, S.H. et al. (1976) Immobilization of glucose isomerase on chitin with glutaraldehyde and by simple adsorption. Biotechnol. Bioeng., 18, 439–45.

    Article  CAS  Google Scholar 

  • Stanley, W.L., Watters, G.G., Kelly, S.H. and Olson, A.C. (1978) Glucoamylase immobilized on chitin with glutaraldehyde. Biotechnol. Bioeng., 20, 135–42.

    Article  CAS  Google Scholar 

  • Steenson, L.R., Klaenhammer, T.R. and Swaisgood, H.E. (1987) Calcium alginate immobilized cultures of lactic streptococci are protected from bactériophage. J. Dairy Sci., 70, 1121–29.

    Article  CAS  Google Scholar 

  • Stephenson, T. (1987) Acinetobacter: its role in biological phosphate removal, in Advances in Water Pollution Control, Biological Phosphate Removal from Wastewater (ed. R. Ramadori), IAWPRC, pp. 313-16.

    Google Scholar 

  • Sugihara, A., Shimoda, Y. and Tominaga, Y. (1988) Enhanced stability of a microbial lipase immobilized to a novel synthetic amine polymer. Agric. Biol. Chem., 52, 1589–90.

    Article  CAS  Google Scholar 

  • Takahashi, M., Ochi, H., Kaneko, T., Suzuki, H. and Tanaka, H. (1990) Diacetyl production by immobilized citrate positive Lactococcus lattis spp lattis 3022 in the fibrous Ca-alginate gel. Biotechnol. Lett., 12, 569–74.

    Article  CAS  Google Scholar 

  • Tanaka, A. and Nakajima, H. (1990) Application of immobilized growing cells. Adv. Biochem. Eng. Biotechnol., 42, 97–104.

    CAS  Google Scholar 

  • Tanaka, I., Tosa, T. and Chibata, I. (1977) Screening of matrix suitable for immobilization of microbial cells. J. Solid-Phase Biochem., 2, 225–36.

    Article  Google Scholar 

  • Tanaka, H. Kurosawa, H. and Murakami, H. (1986) Ethanol production from starch by a co-immobilized mixed culture system of Aspergillus awamori and Zymomonas mobilis. Biotechnol. Bioeng., 28, 1761–68.

    Article  CAS  Google Scholar 

  • Taravel, M.N. and Domard, A. (1994) Competition between gel and polyanion-polycation complex formation in a collagen-chitosan binary system. Macromol. Rep., A31, 1237–45.

    CAS  Google Scholar 

  • Thananunkul, D., Tanaka, M., Chichester, C.O. and Lee, T.C. (1976) Degradation of raffìnose and stachyose in soybean milk by alpha-galactosidase from Mortierella vinacea. Entrapment of alpha-galactosidase within polyacrylamide gel. J. Food Sci., 41, 173–80.

    Article  CAS  Google Scholar 

  • Toerien, D.F., Gerber, A., Lotter, L.H. and Cloete, T.E. (1990) Enhanced biological phosphorus removal in activated sludge system. Adv. Microbial Ecol., 11, 173–230.

    Article  CAS  Google Scholar 

  • Tosa, T., Sato, T., Mori, T. et al. (1979) Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol. Bioeng., 21, 1697–709.

    Article  CAS  Google Scholar 

  • Toshifumi, S., Nobuko, T., Mamoru, Y., Keiji, F. and Haruna, K. (1995) Enzyme immobilization on thermosensitive microspheres. Colloids Surfaces B: Biointerfaces, 4, 267–80.

    Article  Google Scholar 

  • Tramper, J. (1990) Conversions by immobilized cells vs. traditional fermentations, in Physiology of Immobilized Cells (eds J.A.M. de Bont, J. Visser, B. Mattiasson and J. Tramper), Elsevier, Amsterdam, pp. 123-39.

    Google Scholar 

  • Tramper, J., Luyben, K.C.A. and van den Tweel, W.J.J. (1983) Kinetic aspects of glucose oxidation by Gluconobacter oxydons cells immobilized in calcium alginate. Eur. J. Appt. Microbiol. Biotechnol., 17, 13–19.

    Article  CAS  Google Scholar 

  • Travieso, L., Benitez, F., Weiland, P. et al. (1996) Experiments on immobilization of mìcroalgae for nutrient removal in wastewater treatments. Bioresource Technol., 55, 181–6.

    Article  CAS  Google Scholar 

  • Tsuehida, E. and Abe, K. (1986) Polyelectrolyte complexes, in Development in Ionic Polymers (eds A.D. Wilson and H.J. Prosser), Elsevier Applied Science, London, pp. 191-266.

    Google Scholar 

  • Tyagi, R.D., Gupta, S.K. and Chand, S. (1992) Process engineering studies on continuous ethanol production by immobilized S. cerevisiae. Process Biochem., 27, 23–32.

    Article  CAS  Google Scholar 

  • Ulbrich-Hofmann, R. and Selisko, B. (1992) Soluble and immobilized senzymes in water-miscible organic solvents: glucoamylase and invertase. Enzyme Microbiol. Technol., 15, 33–41.

    Article  Google Scholar 

  • Ulonska, A., Deckwer, W.D. and Hecht, V. (1995) Degradation of quinoline by immobilized Cömamonas acidovorans in a three-phase airlift reactor. Biotechnol. Bioeng., 46, 80–7.

    Article  CAS  Google Scholar 

  • Underdal, B., Skulberg,-O.M., Dahl, E. and Aune, T. (1988) Disastrous bloom of Chrysochromulina polylepis (Prymnesiophyceae), in Norwegian Coastal Waters 1988 — Mortality in Marine Biota, AMBIO, Vol. 18, pp. 265-70.

    Google Scholar 

  • Van Griethuysen, E., Flaschel, E. and Renken, A. (1986) Immobilization of lactase on chitosan-coated silica gel particles, in Chitin in Nature and Technology (eds R. Muzzarelli, C. Jeuniaux and G.W. Gooday), Plenum Press, New York, pp. 422-7.

    Google Scholar 

  • Vassilev, N.B., Vassileva, M.C. and Spassova, D.I. (1993) Production of gluconic acid by Aspergillus niger immobilized on polyurethane foam. Appt. Microb. Dol. Biotechnol., 39, 285–90.

    CAS  Google Scholar 

  • Veillemard, J.C., Goulet, J., Amiot, J., Vijayalakshmi, M.A. and Terré, S. (1988) Continuous production of small peptides from milk proteins by extracellular proteases of free and immobilized Serratia marcescens cells. Enzyme Microbiol. Technol., 10, 2–8.

    Article  Google Scholar 

  • Vilchez, C. and Vega, J.M. (1994) Nitrite uptake by Chlamydomonas reinhardtii cells immobilized in calcium alginate. Appl. Microbiol. Biotechnol., 41, 137–41.

    Article  CAS  Google Scholar 

  • Vilchez, C. and Vega, J.M. (1995) Nitrite uptake by immobilized Chlamydomonas reinhardtii cells growing in airlift reactors. Enzyme Microbiol. Technol., 17, 386–90.

    Article  CAS  Google Scholar 

  • Vives, C., Casas, C., Godia, F. and Sola, C. (1993) Determination of the intrinsic fermentation kinetics of Saccharomyces cerevisiae cells immobilized in Ca-alginate beads and observations on their growth. Appl. Microbiol. Biotechnol., 38, 467–73.

    Article  CAS  Google Scholar 

  • Vorlop, K.D. and Klein, J. (1983) New developments in the field of cell immobilization—formation of biocatalysts by ionotropic gelation, in Enzyme Technology (ed. R.M. Lefferty), Springer International, New York, pp. 219-35.

    Google Scholar 

  • Vorlop, K.D. and Klein, J. (1987) Entrapment of microbial cells in chitosan. Meth. Enzymol., 135, 259–68.

    Article  CAS  Google Scholar 

  • Wada, M., Kato, J. and Chibata, I. (1979) A new immobilization of microbial cells. Eur. J. Appl. Microbiol. Biotechnol., 8, 241–8.

    Article  CAS  Google Scholar 

  • Wang, S.S. and Vieth, W.R. (1973) Collagen-enzyme complex membranes and their performance in biocatalytic modules. Biotechnol. Bioeng., 15, 93–9.

    Article  CAS  Google Scholar 

  • Wang, Y., Gao, J.Y. and Dubin, P.L. (1996) Protein separation via polyelectrolyte coacervation: selectivity and efficiency. Biotechnol. Prog., 12, 356–62.

    Article  CAS  Google Scholar 

  • Westrin, B.A. and Axelsson, A. (1991) Diffusion in gel containing immobilized cells: a critical review. Biotechnol. Bioeng., 38, 439–46.

    Article  CAS  Google Scholar 

  • Wijffels, R.H., Leenen, E.J.T.M. and Tramper, J. (1993) Possibilities of nitrification with immobilized cells in waste-water treatment: model or practical system? Water Sci. Technol., 27, 233–40.

    CAS  Google Scholar 

  • Wijffels, R.H., Englund, G., Hunik, J.H. et al. (1995) Effects of diffusion limitation on immobilized nitrifying microorganisms at low temperatures. Biotechnol. Bioeng., 45, 1–9.

    Article  CAS  Google Scholar 

  • Wilkins, E. and Ramesh, Y. (1991) Performance of immobilized enzyme on saccharification and fermentation of agricultural wastes and wood residues. J. Environ. Sci. Health, A26, 883–98.

    CAS  Google Scholar 

  • Williams, D. and Mannecke, D.M. (1981) The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng., 23, 1813–25.

    Article  CAS  Google Scholar 

  • Woskow, S.A. and Glatz, B.A. (1991) Propionic acid production by a propionic acid-tolerant strain of Propionibacterium acidipropionici in batch and semicontinuous fermentation. Appl. Environ. Microbeol., 57, 2821–8.

    CAS  Google Scholar 

  • Wyatt, T. (1979) Global patterns of discolored water and related events in the nineteenth and twentieth centuries, in Developments in Marine Biology, Vol. 1 — Toxic Dinoflagellate Blooms (eds D.L. Taylor and H.H. Seliger), Elsevier, Amsterdam, pp. 263-8.

    Google Scholar 

  • Xia, J. and Dubin, P.L. (1994) Protein-polyelectrolyte complexes, in Macromolecular Complexes in Chemistry and Biology (eds P. Dubin, J. Bock, R. Davis, D.N. Schulz and C. Thies), Springer-Verlag, Heidelberg, pp. 247-71.

    Google Scholar 

  • Yang, S.T., Tank, I.C. and Zhu, H. (1992) A novel fermentation process for calcium magnesium acitate (CMA) production from cheese whey. Appl. Biochem. Biotechnol., 34/ 35, 569–83.

    Article  Google Scholar 

  • Yang, S.T., Huang, Y. and Hong, G. (1995) A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose. Biotechnol. Bioeng., 45, 379–86.

    Article  CAS  Google Scholar 

  • Zaidi, A., Gainer J.L. and Carta, G. (1995) Fatty acid esterification using nylon-immobilized lipase. Biotechnol. Bioeng., 48, 601–5.

    Article  CAS  Google Scholar 

  • Zielinski, B.A. and Aebischer, P. (1994) chitosan as a matrix for mammalian cell encapsulation. Biomaterials, 15, 1049–56.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dumitriu, S., Chornet, E. (1998). Processes with immobilized enzymes and cells. In: Martin, A.M. (eds) Bioconversion of Waste Materials to Industrial Products. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5821-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5821-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7668-2

  • Online ISBN: 978-1-4615-5821-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics