Skip to main content

Transposon Mutagenesis in Disease, Drug Discovery, and Bacterial Evolution

  • Chapter
  • First Online:
Stress-Induced Mutagenesis

Abstract

Transposons are diverse and ubiquitous in living organisms, where they function in gene expression regulation, chromosomal rearrangement, and acceleration of evolutionary change. Their potential uses in, and consequences to, human health are numerous. The smallest transposons, insertion sequence (IS) elements, are prevalent in prokaryotes. Recently, one such element, IS5, has been shown to activate expression of the glpFK operon in E. coli in a mechanistically well-defined Lamarckian fashion (Zhang and Saier, PLoS Genet 5:e1000689, 2009a; Mol Microbiol 74:29–43, 2009b). A recent publication by Wang and Wood (ISME J 5:1517–1525, 2011) has revealed that IS5 also mediates directed mutation of the E. coli flagellar master switch operon, flhDC, and unpublished evidence suggests that the same occurs in other E. coli operons. The question is no longer, “Darwin or Lamarck?”; we must now see biological evolution in terms of Darwin and Lamarck. We are at the threshold of a new era in biological research with a grasp of the genetic basis for Lamarckian evolution at hand.

The most incomprehensible thing in the universe is that the universe is so comprehensible.

-Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antony JM, Deslauriers AM, Bhat RK, Ellestad KK, Power C (2011) Human endogenous retroviruses and multiple sclerosis: innocent bystanders or disease determinants? Biochim Biophys Acta 1812:162–176

    Article  PubMed  CAS  Google Scholar 

  • Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F (2008) Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. Cell 132:208–220

    Article  PubMed  CAS  Google Scholar 

  • Barker CS, Pruss BM, Matsumura P (2004) Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J Bacteriol 186:7529–7537

    Article  PubMed  CAS  Google Scholar 

  • Belay E, Dastidar S, Vandendriessche T, Chuah MK (2011) Transposon-mediated gene transfer into adult and induced pluripotent stem cells. Curr Gene Ther 11:406–413

    Article  PubMed  CAS  Google Scholar 

  • Bertin P, Terao E, Lee EH, Lejeune P, Colson C, Danchin A, Collatz E (1994) The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J Bacteriol 176:5537–5540

    PubMed  CAS  Google Scholar 

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  PubMed  CAS  Google Scholar 

  • Chen YM, Lu Z, Lin EC (1989) Constitutive activation of the fucAO operon and silencing of the divergently transcribed fucPIK operon by an IS5 element in Escherichia coli mutants selected for growth on L-1,2-propanediol. J Bacteriol 171:6097–6105

    PubMed  CAS  Google Scholar 

  • Copeland NG, Jenkins NA (2010) Harnessing transposons for cancer gene discovery. Nat Rev Cancer 10:696–706

    Article  PubMed  CAS  Google Scholar 

  • Dalrymple B (1987) Novel rearrangements of IS30 carrying plasmids leading to the reactivation of gene expression. Mol Gen Genet 207:413–420

    Article  PubMed  CAS  Google Scholar 

  • Du H, Sheng X, Zhang H, Zou X, Ni B, Xu S, Zhu X, Xu H, Huang X (2011) RpoE may promote flagellar gene expression in Salmonella enterica serovar typhi under hyperosmotic stress. Curr Microbiol 62:492–500

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich GD, Ahmed A, Earl J, Hiller NL, Costerton JW, Stoodley P, Post JC, DeMeo P, Hu FZ (2010) The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. FEMS Immunol Med Microbiol 59:269–279

    PubMed  CAS  Google Scholar 

  • Fernandez De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35:1560–1572

    Article  PubMed  CAS  Google Scholar 

  • Galas D, Chandler M (1989) Bacterial insertion sequences. In: Berg D, Howe M (eds) Mob DNA. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Gauger EJ, Leatham MP, Mercado-Lubo R, Laux DC, Conway T, Cohen PS (2007) Role of motility and the flhDC Operon in Escherichia coli MG1655 colonization of the mouse intestine. Infect Immun 75:3315–3324

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien MA, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa AP, Le QH, Melayah D, Petit M, Poncet C et al (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241

    Article  PubMed  CAS  Google Scholar 

  • Gray YH (2000) It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet 16:461–468

    Article  PubMed  CAS  Google Scholar 

  • Guynet C, Achard A, Hoang BT, Barabas O, Hickman AB, Dyda F, Chandler M (2009) Resetting the site: redirecting integration of an insertion sequence in a predictable way. Mol Cell 34:612–619

    Article  PubMed  CAS  Google Scholar 

  • Hacking AJ, Lin EC (1976) Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. J Bacteriol 126:1166–1172

    PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  PubMed  CAS  Google Scholar 

  • Haren L, Ton-Hoang B, Chandler M (1999) Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 53:245–281

    Article  PubMed  CAS  Google Scholar 

  • Hughes KT, Gillen KL, Semon MJ, Karlinsey JE (1993) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:1277–1280

    Article  PubMed  CAS  Google Scholar 

  • Ivics Z, Izsvak Z (2010) The expanding universe of transposon technologies for gene and cell engineering. Mob DNA 1:25

    Article  PubMed  CAS  Google Scholar 

  • Junien C, Gallou-Kabani C, Vige A, Gross MS (2005) Nutritionnal epigenomics: consequences of unbalanced diets on epigenetics processes of programming during lifespan and between generations. Ann Endocrinol (Paris) 66:2S19–2S28

    Article  CAS  Google Scholar 

  • Kitamura E, Nakayama Y, Matsuzaki H, Matsumoto K, Shibuya I (1994) Acidic-phospholipid deficiency represses the flagellar master operon through a novel regulatory region in Escherichia coli. Biosci Biotechnol Biochem 58:2305–2307

    Article  PubMed  CAS  Google Scholar 

  • Kool J, Berns A (2009) High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nat Rev Cancer 9:389–399

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Wolf YI (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4:42

    Article  PubMed  Google Scholar 

  • Krin E, Danchin A, Soutourina O (2010) RcsB plays a central role in H-NS-dependent regulation of motility and acid stress resistance in Escherichia coli. Res Microbiol 161:363–371

    Article  PubMed  CAS  Google Scholar 

  • Kurth R, Bannert N (2010) Beneficial and detrimental effects of human endogenous retroviruses. Int J Cancer 126:306–314

    Article  PubMed  CAS  Google Scholar 

  • Lai HC, Shu JC, Ang S, Lai MJ, Fruta B, Lin S, Lu KT, Ho SW (1997) Effect of glucose concentration on swimming motility in enterobacteria. Biochem Biophys Res Commun 231:692–695

    Article  PubMed  CAS  Google Scholar 

  • Lederberg EM (1981) Plasmid reference center registry of transposon (Tn) allocations through July 1981. Gene 16:59–61

    Article  PubMed  CAS  Google Scholar 

  • Leelaporn A, Firth N, Byrne ME, Roper E, Skurray RA (1994) Possible role of insertion sequence IS257 in dissemination and expression of high- and low-level trimethoprim resistance in staphylococci. Antimicrob Agents Chemother 38:2238–2244

    Article  PubMed  CAS  Google Scholar 

  • Lemke JJ, Durfee T, Gourse RL (2009) DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade. Mol Microbiol 74:1368–1379

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Lai MJ, Ang S, Shu JC, Soo PC, Horng YT, Yi WC, Lai HC, Luh KT, Ho SW et al (2000) Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens. J Biomed Sci 7:475–483

    PubMed  CAS  Google Scholar 

  • Macnab R (1996) Flagella and motility. In: Neidhardt FEA (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    PubMed  CAS  Google Scholar 

  • Maksakova IA, Mager DL, Reiss D (2008) Keeping active endogenous retroviral-like elements in check: the epigenetic perspective. Cell Mol Life Sci 65:3329–3347

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol 16:13–47

    Article  PubMed  CAS  Google Scholar 

  • Michalak P (2009) Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity (Edinb) 102:45–50

    Article  CAS  Google Scholar 

  • Miskey C, Izsvak Z, Kawakami K, Ivics Z (2005) DNA transposons in vertebrate functional genomics. Cell Mol Life Sci 62:629–641

    Article  PubMed  CAS  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Perron H, Lang A (2010) The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol 39:51–61

    Article  PubMed  CAS  Google Scholar 

  • Polen T, Rittmann D, Wendisch VF, Sahm H (2003) DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69:1759–1774

    Article  PubMed  CAS  Google Scholar 

  • Pribil PA, Haniford DB (2003) Target DNA bending is an important specificity determinant in target site selection in Tn10 transposition. J Mol Biol 330:247–259

    Article  PubMed  CAS  Google Scholar 

  • Quan JA, Schneider BL, Paulsen IT, Yamada M, Kredich NM, Saier MH Jr (2002) Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium. Microbiology 148:123–131

    PubMed  CAS  Google Scholar 

  • Reimmann C, Moore R, Little S, Savioz A, Willetts NS, Haas D (1989) Genetic structure, function and regulation of the transposable element IS21. Mol Gen Genet 215:416–424

    Article  PubMed  CAS  Google Scholar 

  • Reynolds AE, Felton J, Wright A (1981) Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature 293:625–629

    Article  PubMed  CAS  Google Scholar 

  • Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr (2011) Did adaptive and directed mutation evolve to accelerate stress-induced evolutionary change? J Mol Microbiol Biotechnol 21:5–7

    Article  PubMed  CAS  Google Scholar 

  • Schnetz K, Rak B (1992) IS5: a mobile enhancer of transcription in Escherichia coli. Proc Natl Acad Sci USA 89:1244–1248

    Article  PubMed  CAS  Google Scholar 

  • Schultz JE, Matin A (1991) Molecular and functional characterization of a carbon starvation gene of Escherichia coli. J Mol Biol 218:129–140

    Article  PubMed  CAS  Google Scholar 

  • Silverman M, Simon M (1974) Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol 120:1196–1203

    PubMed  CAS  Google Scholar 

  • Smith TG, Hoover TR (2009) Deciphering bacterial flagellar gene regulatory networks in the genomic era. Adv Appl Microbiol 67:257–295

    Article  PubMed  CAS  Google Scholar 

  • Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-­catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508

    PubMed  CAS  Google Scholar 

  • Soutourina OA, Krin E, Laurent-Winter C, Hommais F, Danchin A, Bertin PN (2002) Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology 148:1543–1551

    PubMed  CAS  Google Scholar 

  • Stafford GP, Ogi T, Hughes C (2005) Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD2C2. Microbiology 151:1779–1788

    Article  PubMed  CAS  Google Scholar 

  • Szeverenyi I, Bodoky T, Olasz F (1996) Isolation, characterization and transposition of an (IS2)2 intermediate. Mol Gen Genet 251:281–289

    PubMed  CAS  Google Scholar 

  • Takeuchi N, Wolf YI, Makarova KS, Koonin EV (2011) Nature and intensity of selection pressure on CRISPR-associated genes. J Bacteriol 194:1216–1225

    Google Scholar 

  • Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14:321–327

    Article  PubMed  CAS  Google Scholar 

  • Theodorou MC, Theodorou EC, Kyriakidis DA (2011) Involvement of AtoSC two-component system in Escherichia coli flagellar regulon. Amino Acids 43:833–844

    Google Scholar 

  • Uchiyama J, Nobue Y, Zhao H, Matsuzaki H, Nagahama H, Matsuoka S, Matsumoto K, Hara H (2010) Involvement of sigmaS accumulation in repression of the flhDC operon in acidic phospholipid-­deficient mutants of Escherichia coli. Microbiology 156:1650–1660

    Article  PubMed  CAS  Google Scholar 

  • VandenDriessche T, Ivics Z, Izsvak Z, Chuah MK (2009) Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 114:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh GR, Kembou Koungni FC, Paukner A, Stratmann T, Blissenbach B, Schnetz K (2010) BglJ-RcsB heterodimers relieve repression of the Escherichia coli bgl operon by H-NS. J Bacteriol 192:6456–6464

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Morizane T, Abo T, Tominaga A, Inoue-Tanaka K, Kutsukake K (2011) EAL domain protein YdiV acts as an anti-FlhD4C2 factor responsible for nutritional control of the flagellar regulon in Salmonella enterica Serovar Typhimurium. J Bacteriol 193:1600–1611

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wood TK (2011) IS5 inserts upstream of the master motility operon flhDC in a quasi-­Lamarckian way. ISME J 5:1517–1525

    Article  PubMed  CAS  Google Scholar 

  • Wei B, Shin S, LaPorte D, Wolfe AJ, Romeo T (2000) Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. J Bacteriol 182:1632–1640

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara K, Mizuuchi K (2002) Mismatch-targeted transposition of Mu: a new strategy to map genetic polymorphism. Proc Natl Acad Sci USA 99:11317–11321

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Saier MH Jr (2009a) A novel mechanism of transposon-mediated gene activation. PLoS Genet 5:e1000689

    Article  PubMed  Google Scholar 

  • Zhang Z, Saier MH Jr (2009b) A mechanism of transposon-mediated directed mutation. Mol Microbiol 74:29–43

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Saier MH Jr (2010) Transposon-mediated directed mutation. Nova Acta Leopoldina 111:19–23

    CAS  Google Scholar 

  • Zhang Z, Saier MH Jr (2011) Transposon-mediated adaptive and directed mutations and their potential evolutionary benefits. J Mol Microbiol Biotechnol 21:59–70

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Yen MR, Saier MH Jr (2010) Precise excision of IS5 from the intergenic region between the fucPIK and the fucAO operons and mutational control of fucPIK operon expression in Escherichia coli. J Bacteriol 192:2013–2019

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Yen MR, Saier MH Jr (2011) A new direction for directed mutation. Trends Evol Biol 3:13–21

    Article  Google Scholar 

  • Zinser ER, Schneider D, Blot M, Kolter R (2003) Bacterial evolution through the selective loss of beneficial Genes. Trade-offs in expression involving two loci. Genetics 164:1271–1277

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments 

The research conducted in our laboratory was supported by NIH grant GM077402. We thank Carl Welliver for his assistance in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton H. Saier Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, Z., Wang, J., Shlykov, M.A., Saier, M.H. (2013). Transposon Mutagenesis in Disease, Drug Discovery, and Bacterial Evolution. In: Mittelman, D. (eds) Stress-Induced Mutagenesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6280-4_4

Download citation

Publish with us

Policies and ethics