Skip to main content

Advertisement

Log in

The Human Endogenous Retrovirus Link between Genes and Environment in Multiple Sclerosis and in Multifactorial Diseases Associating Neuroinflammation

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Endogenous retroviruses represent about 8% of the human genome and belong to the superfamily of transposable and retrotransposable genetic elements. Altogether, these mobile genetic elements and their numerous inactivated “junk” sequences represent nearly one half of the human DNA. Nonetheless, a significant part of this “non-conventional” genome has retained potential activity. Epigenetic control is notably involved in silencing most of these genetic elements but certain environmental factors such as viruses are known to dysregulate their expression in susceptible cells. More particularly, embryonal cells with limited gene methylation are most susceptible to uncontrolled activation of these mobile genetic elements by, e.g., viral infections. In particular, certain viruses transactivate promoters from endogenous retroviral family type W (HERV-W). HERV-W RNA was first isolated in circulating viral particles (Multiple Sclerosis-associated RetroViral element, MSRV) that have been associated with the evolution and prognosis of multiple sclerosis. HERV-W elements encode a powerful immunopathogenic envelope protein (ENV) that activates a pro-inflammatory and autoimmune cascade through interaction with Toll-like receptor 4 on immune cells. This ENV protein has repeatedly been detected in MS brain lesions and may be involved in other diseases. Epigenetic factors controlling HERV-W ENV protein expression then reveal critical. This review addresses the gene–environment epigenetic interface of such HERV-W elements and its potential involvement in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haahr S, Sommerlund M, Moller-Larsen A, Nielsen R, Hansen HJ (1991) Just another dubious virus in cells from a patient with multiple sclerosis? Lancet 337:863–864

    Article  PubMed  CAS  Google Scholar 

  2. Perron H, Geny C, Laurent A et al (1989) Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res Virol 140:551–561

    Article  PubMed  CAS  Google Scholar 

  3. Perron H, Lalande B, Gratacap B et al (1991) Isolation of retrovirus from patients with multiple sclerosis. Lancet 337:862–863

    Article  PubMed  CAS  Google Scholar 

  4. Koprowski H, DeFreitas EC, Harper ME et al (1985) Multiple sclerosis and human T-cell lymphotropic retroviruses. Nature 318:154–160

    Article  PubMed  CAS  Google Scholar 

  5. Haahr S, Sommerlund M, Christensen T, Jensen AW, Hansen HJ, Moller-Larsen A (1994) A putative new retrovirus associated with multiple sclerosis and the possible involvement of Epstein–Barr virus in this disease. Ann N Y Acad Sci 724:148–156

    Article  PubMed  CAS  Google Scholar 

  6. Perron H, Firouzi R, Tuke P et al (1997) Cell cultures and associated retroviruses in multiple sclerosis. Collaborative Research Group on MS. Acta Neurol Scand Suppl 169:22–31

    Article  PubMed  CAS  Google Scholar 

  7. Perron H, Geny C, Gratacap B et al (1991) Isolations of an unknown retrovirus from CSF, blood and brain from patients with multiple sclerosis. In: Wiethölter H (ed) Current concepts in multiple sclerosis. Elsevier, Amsterdam, pp 111–116

    Google Scholar 

  8. Perron H, Gratacap B, Lalande B et al (1992) In vitro transmission and antigenicity of a retrovirus isolated from a multiple sclerosis patient. Res Virol 143:337–350

    Article  PubMed  CAS  Google Scholar 

  9. Sommerlund M, Pallesen G, Moller-Larsen A, Hansen HJ, Haahr S (1993) Retrovirus-like particles in an Epstein–Barr virus-producing cell line derived from a patient with chronic progressive myelopathy. Acta Neurol Scand 87:71–76

    PubMed  CAS  Google Scholar 

  10. Perron H, Garson JA, Bedin F et al (1997) Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci USA 94:7583–7588

    Article  PubMed  CAS  Google Scholar 

  11. Tuke PW, Perron H, Bedin F, Beseme F, Garson JA (1997) Development of a pan-retrovirus detection system for multiple sclerosis studies. Acta Neurol Scand Suppl 169:16–21

    Article  PubMed  CAS  Google Scholar 

  12. Komurian-Pradel F, Paranhos-Baccala G, Bedin F et al (1999) Molecular cloning and characterization of MSRV-related sequences associated with retrovirus-like particles. Virology 260:1–9

    Article  PubMed  CAS  Google Scholar 

  13. Blond JL, Beseme F, Duret L et al (1999) Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 73:1175–1185

    PubMed  CAS  Google Scholar 

  14. Perron H, Perin JP, Rieger F, Alliel PM (2000) Particle-associated retroviral RNA and tandem RGH/HERV-W copies on human chromosome 7q: possible components of a ‘chain-reaction’ triggered by infectious agents in multiple sclerosis? J Neurovirol 6:S67–S75

    PubMed  Google Scholar 

  15. Bai J, Zhu RY, Stedman K et al (1996) Unique long terminal repeat U3 sequences distinguish exogenous jaagsiekte sheep retroviruses associated with ovine pulmonary carcinoma from endogenous loci in the sheep genome. J Virol 70:3159–3168

    PubMed  CAS  Google Scholar 

  16. Bartosch B, Stefanidis D, Myers R, Weiss R, Patience C, Takeuchi Y (2004) Evidence and consequence of porcine endogenous retrovirus recombination. J Virol 78:13880–13890

    Article  PubMed  CAS  Google Scholar 

  17. Bramblett D, Liu J, Lozano M et al (1997) Mouse mammary tumor virus: a virus that exploits the immune system. Leukemia 11:183–186

    PubMed  Google Scholar 

  18. Contag CH, Plagemann PG (1989) Age-dependent poliomyelitis of mice: expression of endogenous retrovirus correlates with cytocidal replication of lactate dehydrogenase-elevating virus in motor neurons. J Virol 63:4362–4369

    PubMed  CAS  Google Scholar 

  19. Xu L, Tay CH, Huber BT, Sarkar NH (2000) Cloning of an infectious milk-borne mouse mammary tumor virus (MMTV) DNA from a mammary tumor that developed in an endogenous MMTV-free wild mouse. Virology 273:325–332

    Article  PubMed  CAS  Google Scholar 

  20. Lower R, Lower J, Kurth R (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci U S A 93:5177–5184

    Article  PubMed  CAS  Google Scholar 

  21. Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3:282–286

    Article  PubMed  CAS  Google Scholar 

  22. Weiss RA, Griffiths D, Takeuchi Y, Patience C, Venables PJ (1999) Retroviruses: ancient and modern. Arch Virol Suppl 15:171–177

    PubMed  CAS  Google Scholar 

  23. Christensen T, Pedersen L, Sorensen PD, Moller-Larsen A (2002) A transmissible human endogenous retrovirus. AIDS Res Hum Retroviruses 18:861–866

    Article  PubMed  Google Scholar 

  24. Christensen T, Tonjes RR, Zur Megede J, Boller K, Moller-Larsen A (1999) Reverse transcriptase activity and particle production in B lymphoblastoid cell lines established from lymphocytes of patients with multiple sclerosis. AIDS Res Hum Retroviruses 15:285–291

    Article  PubMed  CAS  Google Scholar 

  25. Dolei A, Perron H (2009) The multiple sclerosis-associated retrovirus and its HERV-W endogenous family: a biological interface between virology, genetics, and immunology in human physiology and disease. J Neurovirol 15(1):4–13

    Article  PubMed  CAS  Google Scholar 

  26. Munch M, Moller-Larsen A, Christensen T, Morling N, Hansen HJ, Haahr S (1995) B-lymphoblastoid cell lines from multiple sclerosis patients and a healthy control producing a putative new human retrovirus and Epstein–Barr virus. Mult Scler 1:78–81

    PubMed  CAS  Google Scholar 

  27. Garson JA, Tuke PW, Giraud P, Paranhos-Baccala G, Perron H (1998) Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet 351:33

    Article  PubMed  CAS  Google Scholar 

  28. Dolei A, Serra C, Mameli G et al (2002) Multiple sclerosis-associated retrovirus (MSRV) in Sardinian MS patients. Neurology 58:471–473

    PubMed  CAS  Google Scholar 

  29. Serra C, Sotgiu S, Mameli G, Pugliatti M, Rosati G, Dolei A (2001) Multiple sclerosis and multiple sclerosis-associated retrovirus in Sardinia. Neurol Sci 22:171–173

    Article  PubMed  CAS  Google Scholar 

  30. Sotgiu S, Arru G, Soderstrom M, Mameli G, Serra C, Dolei A (2006) Multiple sclerosis-associated retrovirus and optic neuritis. Mult Scler 12:357–359

    Article  PubMed  CAS  Google Scholar 

  31. Sotgiu S, Serra C, Mameli G et al (2002) Multiple sclerosis-associated retrovirus and MS prognosis: an observational study. Neurology 59:1071–1073

    PubMed  CAS  Google Scholar 

  32. Zawada M, Liwien I, Pernak M et al (2003) MSRV pol sequence copy number as a potential marker of multiple sclerosis. Pol J Pharmacol 55:869–875

    PubMed  CAS  Google Scholar 

  33. Mameli G, Astone V, Arru G et al (2007) Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MS-associated retrovirus/HERV-W endogenous retrovirus, but not Human herpesvirus 6. J Gen Virol 88:264–274

    Article  PubMed  CAS  Google Scholar 

  34. Mameli G, Serra C, Astone V et al (2008) Inhibition of multiple sclerosis-associated retrovirus as biomarker of interferon therapy. J Neurovirol 14:73–77

    Article  PubMed  CAS  Google Scholar 

  35. Arru G, Mameli G, Astone V et al (2007) Multiple sclerosis and HERV-W/MSRV: a multicentric study. Int J Biomed Sci 3:292–297

    CAS  Google Scholar 

  36. Rolland A, Jouvin-Marche E, Viret C, Faure M, Perron H, Marche PN (2006) The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol 176:7636–7644

    PubMed  CAS  Google Scholar 

  37. Perron H, Jouvin-Marche E, Michel M et al (2001) Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 287:321–332

    Article  PubMed  CAS  Google Scholar 

  38. Antony JM, van Marle G, Opii W et al (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7:1088–1095

    Article  PubMed  CAS  Google Scholar 

  39. Perron H, Lazarini F, Ruprecht K et al (2005) Human endogenous retrovirus (HERV)-W ENV and GAG proteins: physiological expression in human brain and pathophysiological modulation in multiple sclerosis lesions. J Neurovirol 11:23–33

    Article  PubMed  CAS  Google Scholar 

  40. Jolivet-Reynaud C, Perron H, Ferrante P, Becquart L, Dalbon P, Mandrand B (1999) Specificities of multiple sclerosis cerebrospinal fluid and serum antibodies against mimotopes. Clin Immunol 93:283–293

    Article  PubMed  CAS  Google Scholar 

  41. Sotgiu S, Arru G, Mameli G et al (2006) Multiple sclerosis-associated retrovirus in early multiple sclerosis: a six-year follow-up of a Sardinian cohort. Mult Scler 12:698–703

    Article  PubMed  CAS  Google Scholar 

  42. Deb-Rinker P, Klempan TA, O'Reilly RL, Torrey EF, Singh SM (1999) Molecular characterization of a MSRV-like sequence identified by RDA from monozygotic twin pairs discordant for schizophrenia. Genomics 61:133–144

    Article  PubMed  CAS  Google Scholar 

  43. Huang WJ, Liu ZC, Wei W, Wang GH, Wu JG, Zhu F (2006) Human endogenous retroviral pol RNA and protein detected and identified in the blood of individuals with schizophrenia. Schizophr Res 83:193–199

    Article  PubMed  Google Scholar 

  44. Karlsson H, Bachmann S, Schroder J, McArthur J, Torrey EF, Yolken RH (2001) Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci U S A 98:4634–4639

    Article  PubMed  CAS  Google Scholar 

  45. Karlsson H, Schroder J, Bachmann S, Bottmer C, Yolken RH (2004) HERV-W-related RNA detected in plasma from individuals with recent-onset schizophrenia or schizoaffective disorder. Mol Psychiatry 9:12–13

    Article  PubMed  CAS  Google Scholar 

  46. Yao Y, Schroder J, Nellaker C et al (2007) Elevated levels of human endogenous retrovirus-W transcripts in blood cells from patients with first episode schizophrenia. Genes Brain Behav 7:103–112

    PubMed  Google Scholar 

  47. Yolken RH, Karlsson H, Yee F, Johnston-Wilson NL, Torrey EF (2000) Endogenous retroviruses and schizophrenia. Brain Res Brain Res Rev 31:193–199

    Article  PubMed  CAS  Google Scholar 

  48. Perron H, Mekaoui L, Bernard C, Veas F, Stefas I, Leboyer M (2008) Endogenous retrovirus type W GAG and envelope protein antigenemia in serum of schizophrenic patients. Biol Psychiatry 64:1019–1023

    Article  PubMed  CAS  Google Scholar 

  49. Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R (2007) C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia. Schizophr Res 93:261–265

    Article  PubMed  Google Scholar 

  50. Fan X, Pristach C, Liu EY, Freudenreich O, Henderson DC, Goff DC (2007) Elevated serum levels of C-reactive protein are associated with more severe psychopathology in a subgroup of patients with schizophrenia. Psychiatry Res 149:267–271

    Article  PubMed  CAS  Google Scholar 

  51. Chao CC, Hu S (1994) Tumor necrosis factor-alpha potentiates glutamate neurotoxicity in human fetal brain cell cultures. Dev Neurosci 16:172–179

    Article  PubMed  CAS  Google Scholar 

  52. Chao CC, Hu S, Ehrlich L, Peterson PK (1995) Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 9:355–365

    Article  PubMed  CAS  Google Scholar 

  53. Lavillette D, Marin M, Ruggieri A, Mallet F, Cosset FL, Kabat D (2002) The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J Virol 76:6442–6452

    Article  PubMed  CAS  Google Scholar 

  54. Weis S, Llenos IC, Dulay JR, Verma N, Sabunciyan S, Yolken RH (2007) Changes in region- and cell type-specific expression patterns of neutral amino acid transporter 1 (ASCT-1) in the anterior cingulate cortex and hippocampus in schizophrenia, bipolar disorder and major depression. J Neural Transm 114:261–271

    Article  PubMed  CAS  Google Scholar 

  55. Costas J (2002) Characterization of the intragenomic spread of the human endogenous retrovirus family HERV-W. Mol Biol Evol 19:526–533

    PubMed  CAS  Google Scholar 

  56. Griffiths DJ (2001) Endogenous retroviruses in the human genome sequence. Genome Biol 2:1017

    Article  Google Scholar 

  57. Weiss RA (2000) Ancient and modern retroviruses. Acta Microbiol Immunol Hung 47:403–410

    PubMed  CAS  Google Scholar 

  58. Weiss RA (2006) The discovery of endogenous retroviruses. Retrovirology 3:67

    Article  PubMed  CAS  Google Scholar 

  59. Sverdlov ED (2000) Retroviruses and primate evolution. Bioessays 22:161–171

    Article  PubMed  CAS  Google Scholar 

  60. Voisset C, Blancher A, Perron H, Mandrand B, Mallet F, Paranhos-Baccala G (1999) Phylogeny of a novel family of human endogenous retrovirus sequences, HERV-W, in humans and other primates. AIDS Res Hum Retroviruses 15:1529–1533

    Article  PubMed  CAS  Google Scholar 

  61. Vogel G (2001) The human genome. Objection #2: why sequence the junk? Science 291:1184

    Article  PubMed  CAS  Google Scholar 

  62. Boller K, Konig H, Sauter M et al (1993) Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology 196:349–353

    Article  PubMed  CAS  Google Scholar 

  63. Garson J, Creange A, Dolei A et al (2005) MSRV, Syncytin and the role of endogenous retroviral proteins in demyelination. Mult Scler 11:249–250

    Article  PubMed  CAS  Google Scholar 

  64. Dolei A, Perron H (2008) The multiple sclerosis-associated retrovirus and its HERV-W endogenous family: a biological interface between virology, genetics, and immunology in human physiology and disease. J Neurovirol 15:4–13

    Article  PubMed  CAS  Google Scholar 

  65. Bonnaud B, Bouton O, Oriol G, Cheynet V, Duret L, Mallet F (2004) Evidence of selection on the domesticated ERVWE1 env retroviral element involved in placentation. Mol Biol Evol 21:1895–1901

    Article  PubMed  CAS  Google Scholar 

  66. Mi S, Lee X, Li X et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis [see comments]. Nature 403:785–789

    Article  PubMed  CAS  Google Scholar 

  67. Prudhomme S, Oriol G, Mallet F (2004) A retroviral promoter and a cellular enhancer define a bipartite element which controls env ERVWE1 placental expression. J Virol 78:12157–12168

    Article  PubMed  CAS  Google Scholar 

  68. Gong R, Peng X, Kang S et al (2005) Structural characterization of the fusion core in syncytin, envelope protein of human endogenous retrovirus family W. Biochem Biophys Res Commun 331:1193–1200

    Article  PubMed  CAS  Google Scholar 

  69. Cheynet V, Ruggieri A, Oriol G et al (2005) Synthesis, assembly, and processing of the Env ERVWE1/syncytin human endogenous retroviral envelope. J Virol 79:5585–5593

    Article  PubMed  CAS  Google Scholar 

  70. Schulz WA, Steinhoff C, Florl AR (2006) Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol 310:211–250

    Article  PubMed  CAS  Google Scholar 

  71. Groudine M, Eisenman R, Weintraub H (1981) Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 292:311–317

    Article  PubMed  CAS  Google Scholar 

  72. Hoffmann JW, Steffen D, Gusella J et al (1982) DNA methylation affecting the expression of murine leukemia proviruses. J Virol 44:144–157

    PubMed  CAS  Google Scholar 

  73. Matouskova M, Blazkova J, Pajer P, Pavlicek A, Hejnar J (2006) CpG methylation suppresses transcriptional activity of human syncytin-1 in non-placental tissues. Exp Cell Res 312:1011–1020

    Article  PubMed  CAS  Google Scholar 

  74. Christensen T, Petersen T, Thiel S, Brudek T, Ellermann-Eriksen S, Moller-Larsen A (2007) Gene–environment interactions in multiple sclerosis: innate and adaptive immune responses to human endogenous retrovirus and herpesvirus antigens and the lectin complement activation pathway. J Neuroimmunol 183:175–188

    Article  PubMed  CAS  Google Scholar 

  75. Lafon M, Jouvin-Marche E, Marche PN, Perron H (2002) Human viral superantigens: to be or not to be transactivated? Trends Immunol 23:238–239

    Article  PubMed  CAS  Google Scholar 

  76. Lee WJ, Kwun HJ, Kim HS, Jang KL (2003) Activation of the human endogenous retrovirus W long terminal repeat by herpes simplex virus type 1 immediate early protein 1. Mol Cells 15:75–80

    PubMed  CAS  Google Scholar 

  77. Nellaker C, Yao Y, Jones-Brando L, Mallet F, Yolken RH, Karlsson H (2006) Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology 3:44

    Article  PubMed  CAS  Google Scholar 

  78. Ruprecht K, Obojes K, Wengel V et al (2006) Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: implications for multiple sclerosis. J Neurovirol 12:65–71

    Article  PubMed  CAS  Google Scholar 

  79. Perron H, Suh M, Lalande B et al (1993) Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol 74:65–72

    Article  PubMed  CAS  Google Scholar 

  80. Badal V, Chuang LS, Tan EH et al (2003) CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J Virol 77:6227–6234

    Article  PubMed  Google Scholar 

  81. Bhende PM, Seaman WT, Delecluse HJ, Kenney SC (2004) The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36:1099–1104

    Article  PubMed  CAS  Google Scholar 

  82. Bonilla V, Sobrino F, Lucas M, Pintado E (2003) Epstein–Barr virus transformation of human lymphoblastoid cells from patients with fragile X syndrome induces variable changes on CGG repeats size and promoter methylation. Mol Diagn 7:163–167

    Article  PubMed  Google Scholar 

  83. Ablashi DV, Lapps W, Kaplan M, Whitman JE, Richert JR, Pearson GR (1998) Human Herpesvirus-6 (HHV-6) infection in multiple sclerosis: a preliminary report. Mult Scler 4:490–496

    PubMed  CAS  Google Scholar 

  84. Ascherio A, Munch M (2000) Epstein–Barr virus and multiple sclerosis. Epidemiology 11:220–224

    Article  PubMed  CAS  Google Scholar 

  85. Challoner PB, Smith KT, Parker JD et al (1995) Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci U S A 92:7440–7444

    Article  PubMed  CAS  Google Scholar 

  86. Haahr S, Sommerlund M, Moller-Larsen A, Mogensen S, Andersen HM (1992) Is multiple sclerosis caused by a dual infection with retrovirus and Epstein–Barr virus? Neuroepidemiology 11:299–303

    Article  PubMed  CAS  Google Scholar 

  87. Munch M, Hvas J, Christensen T, Moller-Larsen A, Haahr S (1997) The implications of Epstein–Barr virus in multiple sclerosis—a review. Acta Neurol Scand Suppl 169:59–64

    Article  PubMed  CAS  Google Scholar 

  88. Yao K, Mandel M, Akyani N et al (2006) Differential HHV-6A gene expression in T cells and primary human astrocytes based on multi-virus array analysis. Glia 53:789–798

    Article  PubMed  Google Scholar 

  89. Serafini B, Rosicarelli B, Franciotta D et al (2007) Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J Exp Med 204:2899–2912

    Article  PubMed  CAS  Google Scholar 

  90. Bergstrom T, Andersen O, Vahlne A (1989) Isolation of herpes simplex virus type 1 during first attack of multiple sclerosis. Ann Neurol 26:283–285

    Article  PubMed  CAS  Google Scholar 

  91. Mancuso R, Delbue S, Borghi E et al (2007) Increased prevalence of varicella zoster virus DNA in cerebrospinal fluid from patients with multiple sclerosis. J Med Virol 79:192–199

    Article  PubMed  CAS  Google Scholar 

  92. Marrie RA, Wolfson C (2001) Multiple sclerosis and varicella zoster virus infection: a review. Epidemiol Infect 127:315–325

    Article  PubMed  CAS  Google Scholar 

  93. Sandri-Goldin RM (1994) Properties of an HSV-1 regulatory protein that appears to impair host cell splicing. Infect Agents Dis 3:59–67

    PubMed  CAS  Google Scholar 

  94. Albrecht P, Torrey EF, Boone E, Hicks JT, Daniel N (1980) Raised cytomegalovirus-antibody level in cerebrospinal fluid of schizophrenic patients. Lancet 2:769–772

    Article  PubMed  CAS  Google Scholar 

  95. Dickerson F, Kirkpatrick B, Boronow J, Stallings C, Origoni A, Yolken R (2006) Deficit schizophrenia: association with serum antibodies to cytomegalovirus. Schizophr Bull 32:396–400

    Article  PubMed  Google Scholar 

  96. Kim JJ, Shirts BH, Dayal M et al (2007) Are exposure to cytomegalovirus and genetic variation on chromosome 6p joint risk factors for schizophrenia? Ann Med 39:145–153

    Article  PubMed  CAS  Google Scholar 

  97. Moises HW, Ruger R, Reynolds GP, Fleckenstein B (1988) Human cytomegalovirus DNA in the temporal cortex of a schizophrenic patient. Eur Arch Psychiatry Neurol Sci 238:110–113

    PubMed  CAS  Google Scholar 

  98. Novotna M, Hanusova J, Klose J et al (2005) Probable neuroimmunological link between Toxoplasma and cytomegalovirus infections and personality changes in the human host. BMC Infect Dis 5:54

    Article  PubMed  Google Scholar 

  99. Rimon R, Ahokas A, Palo J (1986) Serum and cerebrospinal fluid antibodies to cytomegalovirus in schizophrenia. Acta Psychiatr Scand 73:642–644

    Article  PubMed  CAS  Google Scholar 

  100. Torrey EF, Leweke MF, Schwarz MJ et al (2006) Cytomegalovirus and schizophrenia. CNS Drugs 20:879–885

    Article  PubMed  Google Scholar 

  101. Conejero-Goldberg C, Torrey EF, Yolken RH (2003) Herpesviruses and Toxoplasma gondii in orbital frontal cortex of psychiatric patients. Schizophr Res 60:65–69

    Article  PubMed  Google Scholar 

  102. Danesh J, Wong Y, Ward M, Muir J (1999) Risk factors for coronary heart disease and persistent infection with Chlamydia pneumoniae or cytomegalovirus: a population-based study. J Cardiovasc Risk 6:387–390

    PubMed  CAS  Google Scholar 

  103. Ebert T, Kotler M (2005) Prenatal exposure to influenza and the risk of subsequent development of schizophrenia. Isr Med Assoc J 7:35–38

    PubMed  Google Scholar 

  104. Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23:297–302

    PubMed  Google Scholar 

  105. Limosin F, Rouillon F, Payan C, Cohen JM, Strub N (2003) Prenatal exposure to influenza as a risk factor for adult schizophrenia. Acta Psychiatr Scand 107:331–335

    Article  PubMed  CAS  Google Scholar 

  106. Grech A, Takei N, Murray RM (1997) Maternal exposure to influenza and paranoid schizophrenia. Schizophr Res 26:121–125

    Article  PubMed  CAS  Google Scholar 

  107. Torrey EF, Rawlings RR (1996) Fluctuations in schizophrenic births by year. Br J Psychiatry 169:772–775

    Article  PubMed  CAS  Google Scholar 

  108. Crow TJ (1996) Influenza and schizophrenia. Br J Psychiatry 169:790–792

    Article  PubMed  CAS  Google Scholar 

  109. Yolken RH, Torrey EF (1995) Viruses, schizophrenia, and bipolar disorder. Clin Microbiol Rev 8:131–145

    PubMed  CAS  Google Scholar 

  110. Takei N, Murray RM (1994) Prenatal influenza and schizophrenia. Br J Psychiatry 165:833–834

    Article  PubMed  CAS  Google Scholar 

  111. Mednick SA, Machon RA, Huttunen MO, Bonett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45:189–192

    PubMed  CAS  Google Scholar 

  112. Nafee TM, Farrell WE, Carroll WD, Fryer AA, Ismail KM (2008) Epigenetic control of fetal gene expression. BJOG 115:158–168

    Article  PubMed  CAS  Google Scholar 

  113. Lees-Murdock DJ, Walsh CP (2008) DNA methylation reprogramming in the germ line. Epigenetics 3:5–13

    Article  PubMed  Google Scholar 

  114. Fulka H, St John JC, Fulka J, Hozak P (2008) Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation 76:3–14

    PubMed  CAS  Google Scholar 

  115. Rutter M, Moffitt TE, Caspi A (2006) Gene–environment interplay and psychopathology: multiple varieties but real effects. J Child Psychol Psychiatry 47:226–261

    Article  PubMed  Google Scholar 

  116. Stefansson H, Rujescu D, Cichon S et al (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455:232–236

    Article  PubMed  CAS  Google Scholar 

  117. Wagenstaller J, Spranger S, Lorenz-Depiereux B et al (2007) Copy-number variations measured by single-nucleotide-polymorphism oligonucleotide arrays in patients with mental retardation. Am J Hum Genet 81:768–779

    Article  PubMed  CAS  Google Scholar 

  118. Menendez L, Benigno BB, McDonald JF (2004) L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol Cancer 3:12

    Article  PubMed  Google Scholar 

  119. Ogasawara H, Okada M, Kaneko H, Hishikawa T, Sekigawa I, Hashimoto H (2003) Possible role of DNA hypomethylation in the induction of SLE: relationship to the transcription of human endogenous retroviruses. Clin Exp Rheumatol 21:733–738

    PubMed  CAS  Google Scholar 

  120. Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80:1312–1321

    Article  PubMed  CAS  Google Scholar 

  121. Abrink M, Larsson E, Hellman L (1998) Demethylation of ERV3, an endogenous retrovirus regulating the Kruppel-related zinc finger gene H-plk, in several human cell lines arrested during early monocyte development. DNA Cell Biol 17:27–37

    Article  PubMed  CAS  Google Scholar 

  122. Schwartz SA (1983) Transcriptional activation of endogenous rat retrovirus with and without hypomethylation of proviral DNA. Biochem Biophys Res Commun 112:571–577

    Article  PubMed  CAS  Google Scholar 

  123. Ma JC, Zhou Q, Zhou YH et al (2009) The size and ratio of homologous sequence to non-homologous sequence in gene disruption cassette influences the gene targeting efficiency in Beauveria bassiana. Appl Microbiol Biotechnol 82:891–898

    Article  PubMed  CAS  Google Scholar 

  124. Bilodeau M, Girard S, Hebert J, Sauvageau G (2007) A retroviral strategy that efficiently creates chromosomal deletions in mammalian cells. Nat Methods 4:263–268

    Article  PubMed  CAS  Google Scholar 

  125. Choi J, Koh E, Matsui F et al (2008) Study of azoospermia factor-a deletion caused by homologous recombination between the human endogenous retroviral elements and population-specific alleles in Japanese infertile males. Fertil Steril 89:1177–1182

    Article  PubMed  CAS  Google Scholar 

  126. Joyner AL, Bernstein A (1983) Retrovirus transduction: generation of infectious retroviruses expressing dominant and selectable genes is associated with in vivo recombination and deletion events. Mol Cell Biol 3:2180–2190

    PubMed  CAS  Google Scholar 

  127. Lazo PA, Tsichlis PN (1988) Recombination between two integrated proviruses, one of which was inserted near c-myc in a retrovirus-induced rat thymoma: implications for tumor progression. J Virol 62:788–794

    PubMed  CAS  Google Scholar 

  128. Otto E, Jones-Trower A, Vanin EF et al (1994) Characterization of a replication-competent retrovirus resulting from recombination of packaging and vector sequences. Hum Gene Ther 5:567–575

    Article  PubMed  CAS  Google Scholar 

  129. Stuhlmann H, Berg P (1992) Homologous recombination of copackaged retrovirus RNAs during reverse transcription. J Virol 66:2378–2388

    PubMed  CAS  Google Scholar 

  130. Zhang J, Temin HM (1994) Retrovirus recombination depends on the length of sequence identity and is not error prone. J Virol 68:2409–2414

    PubMed  CAS  Google Scholar 

  131. Mirsattari SM, Johnston JB, McKenna R et al (2001) Aboriginals with multiple sclerosis: HLA types and predominance of neuromyelitis optica. Neurology 56:317–323

    PubMed  CAS  Google Scholar 

  132. Cook EH Jr, Scherer SW (2008) Copy-number variations associated with neuropsychiatric conditions. Nature 455:919–923

    Article  PubMed  CAS  Google Scholar 

  133. Consortium TIS (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455:237–241

    Article  CAS  Google Scholar 

  134. Perron H, Mekaoui L, Bernard C, Veas F, Stefas I, Leboyer M (2008) Endogenous retrovirus type W GAG and envelope protein antigenemia in serum of schizophrenic patients. Biol Psychiatry 64:1019–1023

    Article  PubMed  CAS  Google Scholar 

  135. Contag CH, Chan SP, Wietgrefe SW, Plagemann PG (1986) Correlation between presence of lactate dehydrogenase-elevating virus RNA and antigens in motor neurons and paralysis in infected C58 mice. Virus Res 6:195–209

    Article  PubMed  CAS  Google Scholar 

  136. Contag CH, Harty JT, Plagemann PG (1989) Dual virus etiology of age-dependent poliomyelitis of mice. A potential model for human motor neuron diseases. Microb Pathog 6:391–401

    Article  PubMed  CAS  Google Scholar 

  137. Contag CH, Plagemann PG (1988) Susceptibility of C58 mice to paralytic disease induced by lactate dehydrogenase-elevating virus correlates with increased expression of endogenous retrovirus in motor neurons. Microb Pathog 5:287–296

    Article  PubMed  CAS  Google Scholar 

  138. Rolland A, Jouvin-Marche E, Saresella M et al (2005) Correlation between disease severity and in vitro cytokine production mediated by MSRV (multiple sclerosis associated retroviral element) envelope protein in patients with multiple sclerosis. J Neuroimmunol 160:195–203

    Article  PubMed  CAS  Google Scholar 

  139. Saresella M, Marventano I, Speciale L et al (2005) Programmed cell death of myelin basic protein-specific T lymphocytes is reduced in patients with acute multiple sclerosis. J Neuroimmunol 166:173–179

    Article  PubMed  CAS  Google Scholar 

  140. Arnheim N, Calabrese P (2009) Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet 10:478–488

    Article  PubMed  CAS  Google Scholar 

  141. Barros SP, Offenbacher S (2009) Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 88:400–408

    Article  PubMed  CAS  Google Scholar 

  142. Figueiredo LM, Cross GA, Janzen CJ (2009) Epigenetic regulation in African trypanosomes: a new kid on the block. Nat Rev Microbiol 7:504–513

    Article  PubMed  CAS  Google Scholar 

  143. Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33:3–11

    Article  PubMed  CAS  Google Scholar 

  144. Invernizzi P (2009) Future directions in genetic for autoimmune diseases. J Autoimmun 33:1–2

    Article  PubMed  CAS  Google Scholar 

  145. Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M (2009) Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun 33:12–16

    Article  PubMed  CAS  Google Scholar 

  146. Larizza D, Calcaterra V, Martinetti M (2009) Autoimmune stigmata in Turner syndrome: when lacks an X chromosome. J Autoimmun 33:25–30

    Article  PubMed  CAS  Google Scholar 

  147. Persani L, Rossetti R, Cacciatore C, Bonomi M (2009) Primary ovarian insufficiency: X chromosome defects and autoimmunity. J Autoimmun 33:35–41

    Article  PubMed  CAS  Google Scholar 

  148. Sawalha AH, Harley JB, Scofield RH (2009) Autoimmunity and Klinefelter's syndrome: when men have two X chromosomes. J Autoimmun 33:31–34

    Article  PubMed  CAS  Google Scholar 

  149. Wells AD (2009) New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol 182:7331–7341

    Article  PubMed  CAS  Google Scholar 

  150. Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10:467–477

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Perron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perron, H., Lang, A. The Human Endogenous Retrovirus Link between Genes and Environment in Multiple Sclerosis and in Multifactorial Diseases Associating Neuroinflammation. Clinic Rev Allerg Immunol 39, 51–61 (2010). https://doi.org/10.1007/s12016-009-8170-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-009-8170-x

Keywords

Navigation