Skip to main content

Technology of Baked Goods

  • Chapter
  • First Online:
Handbook on Sourdough Biotechnology

Abstract

The chapter describes the main ingredients (wheat flour, water, salt, sugar, and fats) and the different steps of the chain used for making baked goods, from milling to the baking process (mixing, leavening, proofing, dough makeup and baking operations). An overview of the main analytical methods used to determine the quality of baked goods (e.g. fundamental rheology, descriptive empirical measurements, and innovative approaches) is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cauvain SP, Young LS (2006) Current approaches to the classification of bakery products. In: Cauvain SP, Young LS (eds) Baked products: science, technology and practice, 1st edn. Blackwell, Oxford, UK, pp 1–13

    Chapter  Google Scholar 

  2. Pagani MA, Lucisano M, Mariotti M (2006) Italian bakery. In: Hui YH, Corke H, De Leyn I, Nip WK, Cross N (eds) Bakery products, 1st edn, Science and technology. Blackwell Publishing Professional, Ames, pp 527–560

    Chapter  Google Scholar 

  3. Chung OK, Park SH, Tilley M, Lookhart GL (2003) Improving wheat quality. In: Cauvain SP (ed) Bread making. Improving quality, 1st edn. CRC-Woodhead, Cambridge, UK, pp 536–561

    Chapter  Google Scholar 

  4. Shewry PR (2007) Improving the protein content and composition of cereal grain. J Cereal Sci 46:239–250

    Article  CAS  Google Scholar 

  5. Shewry PR, Popineau Y, Lafiandra D, Belton P (2001) Wheat gluten subunits and dough elasticity: findings of the Eurowheat project. Trends Food Sci Technol 11:433–441

    Article  Google Scholar 

  6. Cornell H (2003) The chemistry and biochemistry of wheat. In: Cauvain SP (ed) Bread making. Improving quality, 1st edn. CRC-Woodhead, Cambridge, UK, pp 31–70

    Chapter  Google Scholar 

  7. Hamer RJ, MacRitchie F, Weegels P (2009) Structure and functional properties of gluten. In: Khan K, Shewry PR (eds) Wheat: chemistry and technology. AACC, St. Paul, pp 153–178

    Chapter  Google Scholar 

  8. Hoseney RC (1989) The interaction that produce unique products from wheat flour. In: Pomeranz Y (ed) Wheat is unique, 1989th edn. American Association of Cereal Chemists, St. Paul, pp 595–606

    Google Scholar 

  9. FAO – Food Outlook; www.fao.or/docrep

  10. Katina K (2003) High-fibre baking. In: Cauvain SP (ed) Bread making. Improving quality, 1st edn. CRC-Woodhead, Cambridge, UK, pp 487–499

    Chapter  Google Scholar 

  11. Paradiso VM, Summo C, Trani A, Caponio F (2008) An effort to improve the shelf-life of breakfast cereals using natural mixed tocopherols. J Cereal Sci 47:322–330

    Article  CAS  Google Scholar 

  12. Webb C, Owens GW (2003) Milling and flour quality. In: Cauvain SP (ed) Bread making. Improving quality, 1st edn. CRC-Woodhead, Cambridge, UK, pp 200–219

    Chapter  Google Scholar 

  13. Posner ES (2000) Wheat. In: Kulp K, Ponte JG Jr (eds) Handbook of cereal science and technology, second edition, revised and expanded. Headquarters, Marcel Dekker, New York, pp 1–29

    Google Scholar 

  14. Posner ES, Hibbs AN (1997) In: Posner ES, Hibbs AN (eds) Wheat flour milling. American Association of Cereal Chemists, St. Paul, pp 1–341

    Google Scholar 

  15. Lucisano M, Pagani MA (1997) Cereali e derivati. In: Daghetta A (ed) Gli alimenti: aspetti tecnologici e nutrizionali. Istituto Danone, Milano, pp 7–67

    Google Scholar 

  16. Werner A (2002) Traceability of raw material in bakeries. Getreide Mehl und Brot 56:358–360

    Google Scholar 

  17. Sperber WH (2007) Role of microbiological guidelines in the production and commercial use of milled cereal grains: a practical approach for the 21st century. J Food Prot 70:1041–1053

    Article  Google Scholar 

  18. Tkac JJ (1992) US Patent 5 082 680

    Google Scholar 

  19. Willis M, Giles J (2001) The application of a debranning process to durum wheat milling. In: Kill RC, Tumbull K (eds) Pasta and semolina technology. Blackwell Science, Oxford, UK, pp 64–85

    Google Scholar 

  20. Dexter JE, Martin DG, Sadaranganey GT, Michaelides J, Mathieson N, Tkac JJ, Marchylo BA (1994) Preprocessing: effects on durum wheat milling and spaghetti-making quality. Cereal Chem 71:10–16

    Google Scholar 

  21. Bottega G, Cecchini C, D’Egidio MG, Marti A, Pagani MA (2009) Debranning process to improve quality and safety of wheat and wheat products. Tec Molitoria Int 60:67–78

    Google Scholar 

  22. Laca A, Mousia Z, Dıaz M, Webb C, Pandiella SS (2006) Distribution of microbial contamination within cereal grains. J Food Eng 72:332–338

    Article  Google Scholar 

  23. Sekhon KS, Singh N, Singh RP (1992) Studies of the improvement of quality of wheat infected with Karnal bunt. I. Milling, rheological and baking properties. Cereal Chem 69:50–54

    Google Scholar 

  24. Wrigley C, Batey I (2003) Assessing grain quality. In: Cauvain SP (ed) Bread making. Improving quality, 1st edn. CRC-Woodhead Publishing Ltd, Cambridge, UK, pp 71–96

    Google Scholar 

  25. Sears JK, Darby JR (1982) The technology of plasticizers. In: Sears JK, Darby JR (eds), Wiley Interscience, New York, pp 1–1166

    Google Scholar 

  26. Bernardin JE, Kasarda DD (1973) Hydrated protein fibrils from wheat endosperm. Cereal Chem 50:529–536

    CAS  Google Scholar 

  27. Hoseney RC, Zeleznak K, Lai CS (1986) Wheat gluten: a glassy polymer. Cereal Chem 63:285–286

    Google Scholar 

  28. Cuq B, Abecassis J, Guilbert S (2003) State diagrams to help describe wheat bread processing. Int J Food Sci Tech 38:759–766

    Article  CAS  Google Scholar 

  29. Feillet P, Guinet R, Morel MH, Rouau X (1994) La Pâte. Formation et développement. In: Guinet R, Godon B (eds) La panification française. Lavoisier, Paris, pp 226–279

    Google Scholar 

  30. Schiraldi A, Fessas D (2003) Classical and Knudsen thermogravimetry to check states and displacements of water in food systems. J Therm Anal Cal 71:225–235

    Article  CAS  Google Scholar 

  31. Tolstoguzov VB (2000) Food as dispersion system. Thermodynamic aspects of composition-property relationships in formulated food. J Therm Anal Cal 61:397–409

    Article  CAS  Google Scholar 

  32. Bushuk W (1966) Distribution of water in dough and bread. Baker’s Dig 40:38–40

    Google Scholar 

  33. Eliasson AC (2003) Starch structure and bread quality. In: Cauvain SP (ed) Bread making. Improving quality, 1st edn. CRC-Woodhead, Cambridge, UK, pp 145–167

    Chapter  Google Scholar 

  34. Eliasson AC (2003) Starch structure and bread quality. In: Cauvain SP (ed) Bread making. Improving quality, 1st edn. CRC-Woodhead Publishing Ltd, Cambridge, UK, pp 145–167

    Chapter  Google Scholar 

  35. He H, Roach RR, Hoseney RC (1992) Role of salt in baking. Cereal Food World 53:4–6

    Google Scholar 

  36. Holmes JT, Hoseney RC (1987) Effect of pH and certain ions on bread-making properties. Cereal Chem 64:343–348

    CAS  Google Scholar 

  37. Desgrets R (1994) Les ingredients spécifiques: panification fine, viennoiserie. In: Guinet R, Godon B (eds) La panification française. Lavoisier, Paris, pp 132–151

    Google Scholar 

  38. Campbell GM (2003) Bread aeration. In: Cauvain SP (ed) Bread making. Improving quality, 1st edn. CRC-Woodhead, Cambridge, UK, pp 352–374

    Chapter  Google Scholar 

  39. Gray JA, Bemiller JN (2003) Bread staling: molecular basis and control. Comprehensive Reviews. Compr Rev Food Sci Food Safety 2:1–21

    Article  CAS  Google Scholar 

  40. Kulp K, Ponte JG Jr (1981) Staling of white pan bread: fundamental causes. CRC Crit Rev Food Tec 11:1–48

    Google Scholar 

  41. Chargelegue A, Guinet R, Neyreneuf O, Onno B, Pointrenaud B (1994) La fermentation. In: Guinet R, Godon B (eds) La panification française. Lavoisier, Paris, pp 280–325

    Google Scholar 

  42. Brown J (1993) Advances in breadmaking technology. In: Kamel BS, Stauffer CE (eds) Advances in baking technology. Blackie Academic and Professional, New York, pp 38–87

    Chapter  Google Scholar 

  43. Corsetti A, Farris GA, Gobbetti M (2010) Uso del lievito naturale. In: Gobbetti M, Corsetti A (eds) Biotecnologia dei prodotti lievitati da forno. CEA, Milano, pp 171–187

    Google Scholar 

  44. Vogel RF, Müller M, Stolz P, Ehrmann M (1996) Ecology in sourdough produced by traditional and modern technologies. Adv Food Sci 18:152–159

    Google Scholar 

  45. Dobraszczyk BJ, Campbell GM, Gan Z (2001) Bread: a unique food. In: Dendy DAV, Dobraszczyk BJ (eds) Cereals and cereal products: chemistry and technology. Aspen, Gaithersburg, pp 182–232

    Google Scholar 

  46. Millar S (2003) Controlling dough development. In: Cauvain SP, Cauvain SP (eds) Bread making. Improving quality, 1st edn. CRC-Woodhead, Cambridge, UK, pp 401–423

    Chapter  Google Scholar 

  47. Pyler EJ (1988) Fundamental of baking technology. In: Pyler EJ (ed) Baking science and technology. Part three, Vol. II. Sosland, Merriam

    Google Scholar 

  48. Campbell GM, Rielly CD, Fryer PJ, Sadd PA (1993) Measurement and interpretation of dough densities. Cereal Chem 70:517–521

    Google Scholar 

  49. Spicher G (1983) Baked goods. In: Reed G (ed) Biotechnology. Food and feed production with microorganisms, vol 5. Verlag Chemie, Weinheim, pp 1–80

    Google Scholar 

  50. Gan Z, Ellis PR, Schofield JD (1995) Gas cell stabilization and gas retention in wheat bread dough. J Cereal Sci 21:215–230

    Article  CAS  Google Scholar 

  51. MacRitchie F (1976) The liquid phase of dough and its role in baking. Cereal Chem 53:318–326

    Google Scholar 

  52. Cauvain SP, Young LS (2003) Water control in baking. In: Cauvain SP (ed) Bread making: improving quality, 1st edn. CRC-Woodhead, Cambridge, UK, pp 447–466

    Chapter  Google Scholar 

  53. Richard-Molard D (1994) Le goût du pain. In: Guinet R, Godon B (eds) La panification française. Lavoisier, Paris, pp 452–476

    Google Scholar 

  54. Lefebvre J (2006) An outline of the non-linear viscoelastic behaviour of wheat flour dough in shear. Rheol Acta 45:525–538

    Article  CAS  Google Scholar 

  55. Dobraszczyk BJ, Morgenstern MP (2003) Rheology and the breadmaking process. J Cereal Sci 38:229–245

    Article  CAS  Google Scholar 

  56. Dobraszczyk BJ, Salmanowicz BP (2008) Comparison of predictions of baking volume using large deformation rheological properties. J Cereal Sci 47:292–301

    Article  Google Scholar 

  57. Bloksma AH (1990) Rheology of the breadmaking process. Cereal Foods World 35:228–236

    Google Scholar 

  58. Walker CE, Hazelton JL (1996) Dough rheological tests Cer Foods World 41:23–28

    Google Scholar 

  59. Kieffer R, Kim JJ, Belitz HD (1981) Zugversuche mit Weizenkleber im Mikromaβstab. Z Lebensm Unters Forsch 172:190–192

    Article  CAS  Google Scholar 

  60. Kieffer R, Garnreiter F, Belitz HD (1981) Beurteilung von Teigeigenschaften durch Zugversuche im Mikromaβstab. Z Lebensm Unters Forsch 172:193–194

    Article  CAS  Google Scholar 

  61. Dobraszczyk BJ (2003) Measuring the rheological properties of dough. In: Cauvain SP, Cauvain SP (eds) Bread making. Improving quality, 1st edn. CRC-Woodhead, Cambridge, UK, pp 375–400

    Chapter  Google Scholar 

  62. Steffe JF (1996) In: Steffe JF (ed) Rheological methods in food engineering. Freeman Press, East Lansing

    Google Scholar 

  63. Lefebvre J (2009) Nonlinear, time-dependent shear flow behaviour, and shear-induced effects in wheat flour dough rheology. J Cereal Sci 49:262–271

    Article  Google Scholar 

  64. Bloksma AH, Bushuk W (1988) Rheology and chemistry of dough. In: Pomeranz Y (ed) Wheat chemistry and technology, vol 11, 3rd edn. AACC, St. Paul, pp 131–152

    Google Scholar 

  65. Russ JC, Stewart WD, Russ JC (1988) The measurement of macroscopic images. Food Technol 42:94–102

    Google Scholar 

  66. Riva M (2003) Analisi dell’immagine dei prodotti da forno. Tecnologie Alimentari 14:30–33

    Google Scholar 

  67. Du C-J, Sun D-W (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Tech 15:230–249

    Article  CAS  Google Scholar 

  68. Riva M, Pagani MA, La Prova M (2004) Un approccio innovativo per lo studio della lievitazione di impasti da pane: l’Analisi d’Immagine. Tec Molitoria 55:629–650

    Google Scholar 

  69. Létang C, Piau M, Verdier C (1999) Characterization of wheat flour–water doughs. Part I: rheometry and microstructure. J Food Eng 41:121–132

    Article  Google Scholar 

  70. Moss R (1974) Dough microstructure as affected by the addition of cysteine, potassium bromate, and ascorbic acid. Cereal Sci Today 19:557–562

    Google Scholar 

  71. Parker ML, Mills ENC, Morgan MRA (1990) The potential of immunoprobes for locating storage proteins in wheat endosperm and bread. J Sci Food Agr 52:35–45

    Article  CAS  Google Scholar 

  72. Sidi H, Moss R (1991) Light microscopy observations on the mechanism of dough development in Chinese steamed bread productions. Food Struct 10:289–293

    Google Scholar 

  73. van de Velde F, van Riel J, Tromp RH (2002) Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). J Sci Food Agr 82:1528–1536

    Article  Google Scholar 

  74. Vodovotz Y, Vittadini E, Coupland J, McClements DJ, Chinachoti P (1996) Bridging the gap: use of confocal microscopy in food research. Food Technol 50:74–82

    Google Scholar 

  75. Blonk JCG, van Aalst H (1993) Confocal scanning light microscopy in food research. Food Res Int 26:297–311

    Article  Google Scholar 

  76. Esselink EFJ, van Aalst H, Maliepaard M, Duynhoven JPM (2003) Long-term storage effect in frozen dough by spectroscopy and microscopy. Cereal Chem 80:396–403

    Article  CAS  Google Scholar 

  77. Yi J, Kerr WL (2009) Combined effects of freezing rate, storage temperature and time on bread dough and baking properties. Food Sci Tech (LWT) 42:1474–1483

    CAS  Google Scholar 

  78. Sinelli N, De Dionigi S, Pagani MA, Riva M, Belloni P (2004) Spettroscopia FT-NIR nel monitoraggio on-line di prodotti da forno: lievitazione e raffermamento. Tec Molitoria 55:1075–1093

    Google Scholar 

  79. Hoyer H (1997) NIR on-line analysis in the food industry. Process Contr Qual 9:143–152

    CAS  Google Scholar 

  80. Cimander C, Carlsson M, Mandenius CF (2002) Sensor fusion for on-line monitoring of yoghurt fermentation. J Biotechnol 99:237–248

    Article  CAS  Google Scholar 

  81. Sirieix A, Downey G (1993) Commercial wheat flour authentication by discriminant analysis of near infrared reflectance spectra. J Near Infrared Spec 1:187–197

    Article  CAS  Google Scholar 

  82. Allosio N, Boivin P, Bertrand D, Courcoux P (1997) Characterisation of barley transformation into malt by three-way factor analysis of near infrared spectra. J Near Infrared Spec 5:157–166

    Article  CAS  Google Scholar 

  83. Pagani MA, Lucisano M, Mariotti M (2002) Valutazione del grado di gelatinizzazione dell’amido mediante tecnica NIR. Tec Molitoria 53:1218–1223

    Google Scholar 

  84. Manley M, Van Zyl L, Osborne BG (2002) Using Fourier transform near infrared spectroscopy in determining kernel hardness, protein and moisture content of whole wheat flour. J Near Infrared Spec 10:71–76

    Article  CAS  Google Scholar 

  85. Osborne BG (1996) Near infrared spectroscopic studies of starch and water in some processed cereal foods. J Near Infrared Spec 4:195–200

    Article  CAS  Google Scholar 

  86. Kays SE, Barton FE, Windham WR (2000) Predicting protein content by near infrared reflectance spectroscopy in diverse cereal food products. J Near Infrared Spec 8:35–43

    Article  CAS  Google Scholar 

  87. Wesley IJ, Larsen N, Osborne BG, Skerritt JH (1998) Non-invasive monitoring of dough mixing by near infrared spectroscopy. J Cereal Sci 27:61–69

    Article  Google Scholar 

  88. Assifaoui A, Champion D, Chiotelli E, Verel A (2006) Characterisation of water mobility in biscuit dough using a low-field 1  H NMR technique. Carbohydr Polym 64:197–204

    Article  CAS  Google Scholar 

  89. Ishida N, Takano H, Naito S, Isobe S, Uemura K, Haishi T, Kose K, Koizumi M, Kano H (2001) Architecture of baked breads depicted by a magnetic resonance imaging. Magn Reson Imaging 19:867–874

    Article  CAS  Google Scholar 

  90. Vodovotz Y, Vittadini E, Sachleben JR (2002) Use of H-1 crossrelaxation nuclear magnetic resonance spectroscopy to probe the changes in bread and its components during aging. Carbohydr Res 337:147–153

    Article  CAS  Google Scholar 

Websites

  1. www.bakerperkinsgroup.com

  2. www.brabender.com

  3. www.buhlergroup.com

  4. www.chopin.fr

  5. www.esmach.it

  6. www.fao.org/docrep (FAO - Food Outlook)

  7. www.imars.case.edu

  8. www.itecaspa.com

  9. www.national-mfg.com

  10. www.ocrim.it

  11. www.sancassiano.com

  12. www.satake-group.com

  13. www.stablemicrosystems.com

  14. www.wpib.de

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Ambrogina Pagani or Manuela Mariotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pagani, M.A., Bottega, G., Mariotti, M. (2013). Technology of Baked Goods. In: Gobbetti, M., Gänzle, M. (eds) Handbook on Sourdough Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5425-0_3

Download citation

Publish with us

Policies and ethics