Skip to main content

Modeling Tumor Blood Vessel Dynamics

  • Chapter
  • First Online:
Mathematical Methods and Models in Biomedicine

Abstract

Tumor blood vessels are structurally abnormal and functionally inefficient, resulting in incomplete perfusion of tumor vessel networks and nonuniform delivery of chemotherapeutics to the tumor cells. Excessive production of the angiogenic growth factor VEGF (vascular endothelial growth factor) contributes to tumor vessel abnormalities, and many anti-VEGF therapies can cause remodeling or stabilization of tumor blood vessels. This remodeling resembles the process of angioadaptation previously studied in the context of normal physiology and ischemia. During angioadaptation (also know as adaptive remodeling), endothelial cells respond to blood forces to alter blood flow. Some segments dilate, while others contract, eventually producing an efficient network. Although not well understood, it is likely that adaptive remodeling depends on blood shear forces, transvascular pressure, upstream signals transmitted along the endothelium as well as growth factors such as VEGF. To provide an analytical framework for understanding these processes in the context of tumor vasculature, we have developed a mathematical model, supported by multiparameter imaging methodology, which incorporates the necessary elements for predicting the transport of nutrients and drugs throughout tumor vessels and tissue, as well as the adaptive remodeling of the blood vessel network. A better understanding of the mechanisms responsible for the network dynamics may lead to novel approaches for treating tumors or other diseases involving vascular pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Kilani, A., Lorthois, S., Nguyen, T-H., Le Noble, F., Cornelissen, A., Unbekandt, M., Boryskina, O., Leroy, L., Fleury, V.: During vertebrate development, arteries exert a morphological control over the venous pattern through physical factors. Phys. Rev. E. 77, 051912 (2008)

    Google Scholar 

  2. Al-Kofahi, K.A., Lasek, S., Szarowski, D., Pace, C., Nagy, G., Turner, J.N., Roysam, B.: Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE-TITB. 6(2), 171–187 (2002)

    Google Scholar 

  3. Alemani, D.: A Lattice Boltzmann numerical approach for modelling reaction-diffusion processes in chemically and physically heterogeneous environments. UNIVERSITÉ DE GENÈVE (2007)

    Google Scholar 

  4. Ansiaux, R., Baudelet, C., Jordan, B.F., Crokart, N., Martinive, P., DeWever, J., Gregoire, V., Feron, O., Gallez, B.: Mechanism of reoxygenation after antiangiogenic therapy using SU5416 and its importance for guiding combined antitumor therapy. Canc. Res. 66(19), 9698–9704 (2006)

    Article  Google Scholar 

  5. Baish, J.W., Netti, P.A., Jain, R.K.: Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc. Res. 53, 128–141 (1997)

    Article  Google Scholar 

  6. Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. Mag. 1(1), 11–23 (1981)

    Article  Google Scholar 

  7. Batchelor, T.T., Sorensen, A.G., diTomaso, E., Zhang, W.T., Duda, D.G., Cohen, K.S., Kozak, K.R., Cahill, D.P., Chen, P.J., Zhu, M., Ancukiewicz, M., Mrugala, M.M., Plotkin, S., Drappatz, J., Louis, D.N., Ivy, P., Scadden, D.T., Benner, T., Loeffler, J.S., Wen, P.Y., Jain, R.K.: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Canc. Cell. 11(1), 83–95 (2007)

    Google Scholar 

  8. Baxter, L.T., Jain, R.K.: Vascular permeability and interstitial diffusion in superfused tissues: A two-dimensional model. Microvasc. Res. 36(1), 108–115 (1988)

    Article  Google Scholar 

  9. Baxter, L.T., Jain, R.K.: Vascular and interstitial transport in tumors. In: Vaupel, P., Jain, R.K. (eds) Tumor Blood Supply and Metabolic Microenvironment: Characterization and Therapeutic Implications. Fischer Publications, Stuttgart (1991)

    Google Scholar 

  10. Baxter, L.T., Yuan, F., Jain, R.K.: Pharmacokinetic analysis of the perivascular distribution of bifunctional antibodies and haptens: Comparison with experimental data. Canc. Res. 52(20), 5838–5844 (1992)

    Google Scholar 

  11. Bhatnagar, P.L., Gross, E.P., Krook, M.: Model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511 (1954)

    MATH  Google Scholar 

  12. Brown, E., McKee, T., diTomaso, E., Pluen, A., Seed, B., Boucher, Y., Jain, R.K.: Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9, 796–800 (2003)

    Google Scholar 

  13. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chaplain, M., Anderson, A.: Mathematical modelling of tumour-induced angiogenesis: Network growth and structure. Canc. Treat Res. 117, 51–75 (2004)

    Article  Google Scholar 

  15. Chaplain, M.A., Anderson, A.R.: Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. Invasion Metastasis. 16(4–5), 222–234 (1996)

    Google Scholar 

  16. Cohen, L.D., Cohen, I.L: Finite-element methods for active contour models and balloons for 2-d and 3-d images. IEEE PAMI. 15(11), 1131–1147 (1993)

    Google Scholar 

  17. Dardis, O., McCloskey, J.: Lattice boltzmann scheme with real numbered solid density for the simulation of flow in porous media. Phys. Rev. E. 57(4), 4834 (1998)

    Article  Google Scholar 

  18. d’Onofrio, A., Ledzewicz, U., Maurer, H., Schattler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222(1), 13–26 (2009)

    Google Scholar 

  19. Dünweg, B., Schiller, U.D., Ladd, A.J.C.: Statistical mechanics of the fluctuating lattice Boltzmann equation. Phys. Rev. E, 76, 36704 (2007)

    Article  Google Scholar 

  20. Dupin, M.M., Halliday, I., Care, C.M., Munn, L.L.: Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E. 75, 066707 (2007)

    Article  Google Scholar 

  21. Dupin, M.M., Halliday, I., Care, C.M., Munn, L.L.: Efficiency oriented, hybrid approach for modeling deformable particles in three dimensions. Progr. Comput. Fluid Dynam. 8, 109–120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dupin, M.M., Halliday, I., Care, C.M., Munn, L.L.: Lattice Boltzmann modelling of blood cell dynamics. Int. J. Comput. Fluid Dynam. 22(7), 481–492 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eaton, W.A., Henry, E.R., Hofrichter, J., Mozzarelli, A.: Is cooperative oxygen binding by hemoglobin really understood? Nat. Struct. Biol. 6, 351–358 (1999)

    Article  Google Scholar 

  24. Ferrara, N., Hillan, K.J., Gerber, H.P., Novotny, W.: Discovery and development of bevacizumab, an anti-vegf antibody for treating cancer. Nat. Rev. Drug Disc. 3(5), 391–400 (2004)

    Article  Google Scholar 

  25. Ferrara, N., Kerbel, R.S.: Angiogenesis as a therapeutic target. Nature. 438(7070), 967–974 (2005)

    Article  Google Scholar 

  26. Fischer, C., Mazzone, M., Jonckx, B., Carmeliet, P.: Flt1 and its ligands vegfb and plgf: Drug targets for anti-angiogenic therapy? Nat. Rev. Canc. 8(12), 942–956 (2008)

    Article  Google Scholar 

  27. Gillies, R.J., Schornack, P.A., Secomb, T.W., Raghunand, N.: Causes and effects of heterogeneous perfusion in tumors. Neoplasia. 1(3), 197–207 (1999)

    Article  Google Scholar 

  28. Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Study of simple hydrodynamic solutions with the two-relaxation-time lattice Boltzmann scheme. Comm. Comput. Phys. 3, 519 (2008)

    Google Scholar 

  29. Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Two-relaxation-time lattice Boltzmann scheme: About parametrization, veloceity pressure and mixed boundary conditions. Comm. Comput. Phys. 3, 427 (2008)

    Google Scholar 

  30. Gruionu, G., Hoying, J.B., Gruionu, L.G., Laughlin, M.H., Secomb, T.W.: Structural adaptation increases predicted perfusion capacity after vessel obstruction in arteriolar arcade network of pig skeletal muscle. Am. J. Physiol. 288(6), H2778–84 (2005)

    Article  Google Scholar 

  31. Hacking, W.J., VanBavel, E., Spaan, J.A.: Shear stress is not sufficient to control growth of vascular networks: A model study. Am. J. Physiol. 270(1 Pt 2), H364–75 (1996)

    Google Scholar 

  32. Hamzah, J., Jugold, M., Kiessling, F., Rigby, P., Manzur, M., Marti, H.H., Rabie, T., Kaden, S., Grone, H.J., Hammerling, G.J., Arnold, B., Ganss, R.: Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature. 453(7193), 410–414 (2008)

    Article  Google Scholar 

  33. Hansen-Smith, F.M., Hudlicka, O., Egginton, S.: In vivo angiogenesis in adult rat skeletal muscle: Early changes in capillary network architecture and ultrastructure. Cell Tissue Res. 286(1), 123–136 (1996)

    Article  Google Scholar 

  34. Huber, P.E., Bischof, M., Jenne, J., Heiland, S., Peschke, P., Saffrich, R., Grone, H.J., Debus, J., Lipson, K.E., Abdollahi, A.: Trimodal cancer treatment: Beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Canc. Res. 65(9), 3643–3655 (2005)

    Article  Google Scholar 

  35. Hudlicka, O., Brown, M.: Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: Role of shear stress, nitric oxide and vascular endothelial growth factor. J. Vasc. Res. 46, 504–512 (2009)

    Article  Google Scholar 

  36. Ichioka, S., Shibata, M., Kosaki, K., Sato, Y., Harii, K., Kamiya, A.: Effects of shear stress on wound-healing angiogenesis in the rabbit ear chamber. J. Surg. Res. 46, 29–35 (1997)

    Article  Google Scholar 

  37. Jain, R.K.: Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat. Med. 7(9), 987–989 (2001)

    Article  Google Scholar 

  38. Jain, R.K.: Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 307(5706), 58–62 (2005)

    Article  Google Scholar 

  39. Jain, R.K.: Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat. Rev. Canc. 8(4), 309–316 (2008)

    Article  Google Scholar 

  40. Jain, R.K., Tong, R.T., Munn, L.L.: Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Canc. Res. 67(6), 2729–2735 (2007)

    Article  Google Scholar 

  41. Jones, P.F., Sleeman, B.D.: Angiogenesis - understanding the mathematical challenge. Angiogenesis. 9(3), 127–138 (2006)

    Article  Google Scholar 

  42. Kamoun, W.S., Ley, C.D., Farrar, C.T., Duyverman, A.M., Lahdenranta, J., Lacorre, D.A., Batchelor, T.T., di Tomaso, E., Duda, D.G., Munn, L.L., Fukumura, D., Sorensen, A.G., Jain, R.K.: Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J. Clin. Oncol. 27(15), 2542–2552 (2009)

    Article  Google Scholar 

  43. Kamoun, W.S., Ley, C.D., Farrar, C.T., Duyverman, A.M., Lahdenranta, J., Lacorre, D.A., Batchelor, T.T., di Tomaso, E., Duda, D.G., Munn, L.L., Fukumura, D., Sorensen, A.G., Jain, R.K.: Edema Control by Cediranib, a Vascular Endothelial Growth Factor Receptor-Targeted Kinase Inhibitor, Prolongs Survival Despite Persistent Brain Tumor Growth in Mice. J. Clin. Oncol. 27(15), 2542–2552 (2009)

    Google Scholar 

  44. Kamoun, W.S., Chae, S.S., Lacorre, D.A., Tyrrell, J.A., Mitre, M., Gillissen, M.A., Fukumura, D., Jain R.K., Munn, L.L.: Simultaneous measurement of rbc velocity, flux, hematocrit and shear rate in vascular networks. Nat. Meth. 7(8), 655–660 (2010)

    Article  Google Scholar 

  45. Kang, Y., Choi, M., Lee, J., Koh, G.Y., Kwon, K., Choi, C.: Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics. PLoS ONE. 4(1), e4275 (2009)

    Article  Google Scholar 

  46. Kass, M., Witkin, A., Terzoopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1987)

    Article  Google Scholar 

  47. Keller, K.H.: Effect of fluid shear on mass transport in flowing blood. Fed. Proc. 30(5), 1591–1599 (1971)

    Google Scholar 

  48. Kerbel, R.S.: Issues regarding improving the impact of antiangiogenic drugs for the treatment of breast cancer. Breast 18, S41–S47 (2009)

    Article  Google Scholar 

  49. Ko, A.H., Dito, E., Schillinger, B., Venook, A.P., Xu, Z., Bergsland, E.K., Wong, D., Scott, J., Hwang, J., Tempero, M.A.: A phase II study evaluating bevacizumab in combination with fixed-dose rate gemcitabine and low-dose cisplatin for metastatic pancreatic cancer: Is an anti-VEGF strategy still applicable? Investig. New Drugs. 26(5), 463–471 (2008)

    Article  Google Scholar 

  50. Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. theoretical foundation. J. Fluid Mech. 271, 285 (1994)

    Google Scholar 

  51. Ladd, A.J.C., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 1191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lagerlund, T.D., Low, P.A.: Mathematical modeling of time-dependent oxygen transport in rat peripheral nerve. Comput. Biol. Med. 23(1), 29–47 (1993)

    Article  Google Scholar 

  53. Ledzewicz, U., Marriott, J., Maurer, H., Schattler, H.: Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment. Math. Med. Biol. 27(2), 157–179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ledzewicz, U., Naghnaeian, M., Schattler, H.: Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J. Math. Biol. 64(3), 557–77 (2011)

    Article  MathSciNet  Google Scholar 

  55. Lee, D.S., Rieger, H., Bartha, K.: Flow correlated percolation during vascular remodeling in growing tumors. Phys. Rev. Lett. 96(5), 58104 (2006)

    Article  Google Scholar 

  56. Macklin, P., McDougall, S., Anderson, A.R., Chaplain, M.A., Cristini, V., Lowengrub, J.: Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58(4–5), 765–798 (2009)

    Article  MathSciNet  Google Scholar 

  57. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE PAMI. 17(2), 158–175 (1995)

    Article  Google Scholar 

  58. McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61(20), 2332 (1988).

    Article  Google Scholar 

  59. Migliorini, C., Qian, Y.H., Chen, H., Brown, E., Jain, R.K., Munn, L.L.:. Red blood cells augment leukocyte rolling in a virtual blood vessel. Biophys. J. 83, 1834–1841 (2002)

    Article  Google Scholar 

  60. Munn, L.L.: Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discov. Today. 8, 396–403 (2003)

    Article  Google Scholar 

  61. Munn, L.L., Dupin, M.M.: Blood cell interactions and segregation in flow. Ann. Biomed. Eng. 36(4), 534–544 (2008)

    Article  Google Scholar 

  62. Nakahara, T., Norberg, S.M., Shalinsky, D.R., Hu-Lowe, D.D., McDonald, D.M.: Effect of inhibition of vascular endothelial growth factor signaling on distribution of extravasated antibodies in tumors. Canc. Res. 66(3), 1434–1445 (2006)

    Article  Google Scholar 

  63. Netti, P.A., Roberge, S., Boucher, Y., Baxter, L.T., Jain, R.K.: Effect of transvascular fluid exchange on arterio-venous pressure relationship: Implication for temporal and spatial heterogeneities in tumor blood flow. Microvasc. Res. 52, 27–46 (1996)

    Article  Google Scholar 

  64. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  65. Pries, A.R., Reglin, B., Secomb, T.W.: Remodeling of blood vessels: Responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension. 46(4), 725–731 (2005)

    Article  Google Scholar 

  66. Pries, A.R., Secomb, T.W.: Modeling structural adaptation of microcirculation. Microcirculation. 15(8), 753–764 (2008)

    Article  Google Scholar 

  67. Pries, A.R., Secomb, T.W.: Origins of heterogeneity in tissue perfusion and metabolism. Cardiovasc. Res. 81(2), 328–335, (2009)

    Article  Google Scholar 

  68. Pries, A.R., Secomb, T.W., Gaehtgens, P.: Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol. 275(2 Pt 2), H349–60 (1998)

    Google Scholar 

  69. Pries, A.R., Secomb, T.W., Gaehtgens, P.: Design principles of vascular beds. Circ. Res. 77(5), 1017–1023 (1995)

    Article  Google Scholar 

  70. Qian, Y.H., d’Humieres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479 (1992)

    Google Scholar 

  71. Reglin, B., Secomb, T.W., Pries, A.R.: Structural adaptation of microvessel diameters in response to metabolic stimuli: Where are the oxygen sensors? Am. J. Physiol. Heart. Circ. Physiol. 297(6), H2206 (2009)

    Article  Google Scholar 

  72. Schattler, H., Ledzewicz, U., Cardwell, B.: Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Math. Biosci. Eng. 8(2), 355–369 (2011)

    Article  MathSciNet  Google Scholar 

  73. Schugart, R.C., Friedman, A., Zhao, R., Sen, C.K.: Wound angiogenesis as a function of tissue oxygen tension: A mathematical model. Proc. Natl. Acad. Sci. USA. 105(7), 2628–2633 (2008)

    Article  Google Scholar 

  74. Sherwood, L.M., Parris, E.E., Folkman, J.: Tumor angiogenesis: Therapeutic implications. New Engl. J. Med. 285(21), 1182–1186 (1971)

    Article  Google Scholar 

  75. Shi, Y., Karl, W.C.: A fast level set method without solving pdes. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pages –, Mark (2005)

    Google Scholar 

  76. Song, J.W., Munn, L.L.: Fluid forces control endothelial sprouting. Proc. Natl. Acad. Sci. 108(37), 15342–15347 (2011)

    Article  Google Scholar 

  77. Staub, N.C.: Alveolar-arterial oxygen tension gradient due to diffusion. J. Appl. Physiol. 18, 673–680 (1963)

    Google Scholar 

  78. Stockmann, C., Doedens, A., Weidemann, A., Zhang, N., Takeda, N., Greenberg, J.I., Cheresh, D.A., Johnson, R.S.: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 456(7223), 814–818 (2008)

    Article  Google Scholar 

  79. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  80. Sukop, M.C., Thorne, D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, New York (2007)

    Google Scholar 

  81. Sun, C., Jain, R.K., Munn, L.L.: Non-uniform plasma leakage affects local hematocrit and blood flow: implications for inflammation and tumor perfusion. Ann. Biomed. Eng. 35(12), 2121–2129 (2007)

    Article  Google Scholar 

  82. Sun, C., Munn, L.L.: Lattice Boltzmann simulation of blood flow in digitized vessel networks. Comput. Math. Appl. 55(7), 1594–1600 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  83. Sun, C.H., Hsu, A.T.: Three-dimensional lattice Boltzmann model for compressible flows. Phys. Rev. E. 68(1), 016303–1–14 (2003)

    Google Scholar 

  84. Sun, C.H.,Munn, L.L.: Particulate nature of blood determines macroscopic rheology: A 2-D lattice Boltzmann analysis. Biophys. J. 88(3), 1635–1645 (2005)

    Article  Google Scholar 

  85. Sun, C.H., Munn, L.L.: Influence of erythrocyte aggregation on leukocyte margination in postcapillary expansions: A lattice-Boltzmann analysis. Physica A. 362, 191–196 (2006)

    Article  Google Scholar 

  86. Sun, S., Wheeler, M.F., Obeyesekere, M., Patrick, C.W.: A deterministic model of growth factor-induced angiogenesis. Bull Math. Biol. 67(2), 313–337 (2005)

    Article  MathSciNet  Google Scholar 

  87. Szczerba, D., Szekely, G.: Computational model of flow-tissue interactions in intussusceptive angiogenesis. J. Theor. Biol. 234(1), 87–97 (2005)

    Article  MathSciNet  Google Scholar 

  88. Tong, R.T., Boucher, Y., Kozin, S.V., Winkler, F., Hicklin, D.J., Jain, R.K.: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Canc. Res. 64(11), 3731–3736 (2004)

    Article  Google Scholar 

  89. Tyrrell, J.A., Mahadevan, V., Tong, R., Brown, E., Roysam, B., Jain, R.K.: Modeling and analysis of multiphoton tumor microvasculature data using super-gaussians. Microvasc. Res. 70(3), 149–162 (2005)

    Article  Google Scholar 

  90. Tyrrell, J.A., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R.K., Roysam, B.: Robust 3-d modeling of vasculature imagery using superellipsoids. IEEE. Trans. Med. Imag. 26(2), 223–237 (2007)

    Article  Google Scholar 

  91. Tyrrell, J.A., Roysam, B., di Tomaso, E., Tong, R., Brown, E.B., Jain, R.K.: Robust 3-d modeling of tumor microvasculature using superellipsoids. In: ISBI, pp. 185–188. IEEE (2006)

    Google Scholar 

  92. Vosseler, S., Mirancea, N., Bohlen, P., Mueller, M.M., Fusenig, N.E.: Angiogenesis inhibition by vascular endothelial growth factor receptor-2 blockade reduces stromal matrix metalloproteinase expression, normalizes stromal tissue, and reverts epithelial tumor phenotype in surface heterotransplants. Canc. Res. 65(4), 1294–1305 (2005)

    Article  Google Scholar 

  93. Waite, L., Fine, J.: Applied BioFluid Mechanics. McGraw-Hill, New York (2007)

    Google Scholar 

  94. Walsh, Stuart D.C., Burwinklea, H., O Saar, M.: A new partial-bounceback lattice-Boltzmann method for fluid flow through heterogeneous media. Comput. Geosci. 35(6), 1186–1193 (2008)

    Google Scholar 

  95. Welter, M., Bartha, K., Rieger, H.: Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth. J. Theor. Biol. 259(3), 405–422 (2009)

    Article  Google Scholar 

  96. Willett, C.G., Boucher, Y., di Tomaso, E., Duda, D.G., Munn, L.L., Tong, R.T., Chung, D.C., Sahani, D.V., Kalva, S.P., Kozin, S.V., Mino, M., Cohen, K.S., Scadden, D.T., Hartford, A.C., Fischman, A.J., Clark, J.W., Ryan, D.P., Zhu, A.X., Blaszkowsky, L.S., Chen, H.X., Shellito, P.C., Lauwers, G.Y., Jain, R.K.: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer.[see comment][erratum appears in Nat. Med. 2004;10(6), 649]. Nat. Med. 10(2), 145–147 (2004)

    Google Scholar 

  97. Winkler, F., Kozin, S.V., Tong, R.T., Chae, S.S., Booth, M.F., Garkavtsev, I., Xu, L., Hicklin, D.J., Fukumura, D., di Tomaso, E., Munn, L.L., Jain, R.K.: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: Role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Canc. Cell. 6(6), 553–563 (2004)

    Google Scholar 

  98. Wu, J., Long, Q., Xu, S., Padhani, A.R.: Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. J. Biomech. 42(6), 712–721 (2009)

    Article  Google Scholar 

  99. Zakrzewicz, A., Secomb, T.W., Pries, A.R.: Angioadaptation: Keeping the vascular system in shape. News Physiol. Sci. 17, 197–201 (2002)

    Google Scholar 

  100. Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluid. 9(6), 1493–1858 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance L. Munn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Munn, L.L., Kunert, C., Tyrrell, J.A. (2013). Modeling Tumor Blood Vessel Dynamics. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_5

Download citation

Publish with us

Policies and ethics