Skip to main content
Log in

Non-Uniform Plasma Leakage Affects Local Hematocrit and Blood Flow: Implications for Inflammation and Tumor Perfusion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Vessel leakiness is a hallmark of inflammation and cancer. In inflammation, plasma extravasation and leukocyte adhesion occur in a coordinated manner to enable the immune response, but also to maintain tissue perfusion. In tumors, similar mechanisms operate, but they are not well regulated. Therefore, blood perfusion in tumors is non-uniform, and delivery of blood-borne therapeutics is difficult. In order to analyze the interplay among plasma leakage, blood viscosity, and vessel geometry, we developed a mathematical model that explicitly includes blood cells, vessel branching, and focal leakage. The results show that local hemoconcentration due to plasma leakage can greatly increase the flow resistance in individual vascular segments, diverting flow to other regions. Similarly, leukocyte rolling can increase flow resistance by partially blocking flow. Vessel dilation can counter these effects, and likely occurs in inflammation to maintain blood flow. These results suggest that potential strategies for improving perfusion through tumor networks include (i) eliminating non-uniform plasma leakage, (ii) inhibiting leukocyte interactions, and (iii) preventing RBC aggregation in sluggish vessels. Normalization of tumor vessels by anti-angiogenic therapy may improve tumor perfusion via the first two mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

RBC:

Red blood cell, erythrocyte

WBC:

White blood cell, leukocyte

References

  1. Baffert F., T. Le, G. Thurston, D. M. McDonald 2006 Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules. Am. J. Physiol. Heart Circ. Physiol. 290:H107–H118

    Article  PubMed  CAS  Google Scholar 

  2. Baish J. W., P. A. Netti, R. K. Jain 1997 Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc. Res. 53:128–141

    Article  PubMed  CAS  Google Scholar 

  3. Baxter L. T., R. K. Jain 1988 Vascular permeability and interstitial diffusion in superfused tissues: a two-dimensional model. Microvasc. Res. 36:108–115

    Article  PubMed  CAS  Google Scholar 

  4. Bishop J. J., A. S. Popel, M. Intaglietta, P. C. Johnson 2001 Effects of erythrocyte aggregation and venous network geometry on red blood cell axial migration. Am. J. Physiol. Heart Circ. Physiol. 281:H939–H950

    PubMed  CAS  Google Scholar 

  5. Campbell, R. B., D. Fukumura, E. B. Brown, L. M. Mazzola, Y. Izumi, R. K. Jain, V. P. Torchilin, L. L. Munn 2002 Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 62:6831–6836

    PubMed  CAS  Google Scholar 

  6. Carmeliet P., R. K. Jain 2000 Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  7. Chang Y. S., L. L. Munn, M. V. Hillsley, R. O. Dull, J. Yuan, S. Lakshminarayanan, T. W. Gardner, R. K. Jain, J. M. Tarbell 2000 Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvasc. Res. 59:265–277

    Article  PubMed  CAS  Google Scholar 

  8. Chang Y. S., E. D. Tomaso, D. M. McDonald, R. C. Jones, R. K. Jain, L. L. Munn 2000 Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. PNAS 97:14608–14613

    Article  PubMed  CAS  Google Scholar 

  9. Chen H., S. Chen, W. H. Matthaeus 1992 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. A. 45:5339–5342

    Article  Google Scholar 

  10. Chen S., G. D. Doolen 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30:329–364

    Article  Google Scholar 

  11. Dvorak H. F. 2002 Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 20:4368–4380

    Article  PubMed  CAS  Google Scholar 

  12. Fukumura D., R. Xavier, T. Sugiura, Y. Chen, E. Parks, N. Lu, M. Selig, G. Nielsen, T. Taksir, R. Jain, B. Seed 1998 Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725

    Article  PubMed  CAS  Google Scholar 

  13. Goldsmith H. L., G. R. Cokelet, P. Gaehtgens 1989 Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 257:H1005–H1015

    PubMed  CAS  Google Scholar 

  14. Hashizume H., P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, D. M. McDonald 2000 Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156:1363–1380

    PubMed  CAS  Google Scholar 

  15. Hobbs S. K., W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, R. K. Jain 1998 Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. PNAS 95:4607–4612

    Article  PubMed  CAS  Google Scholar 

  16. Jain R. K. 1988 Determinants of tumor blood flow: a review. Cancer Res. 48:2641–2658

    PubMed  CAS  Google Scholar 

  17. Jain R. K. 1998 The next frontier of molecular medicine: delivery of therapeutics. Nat. Med. 4:655–657

    Article  PubMed  CAS  Google Scholar 

  18. Jain R. K. 2001 Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7:987–989

    Article  PubMed  CAS  Google Scholar 

  19. Jain R. K. 2005 Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  20. Jain R. K., G. C. Koenig, M. Dellian, D. Fukumura, L. L. Munn, R. J. Melder 1996 Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev. 15:195–204

    Article  PubMed  CAS  Google Scholar 

  21. Jain R. K., R. Tong, L. L. Munn 2007 Effect of vascular normalization by anti-angiogenic therapy on interstitial hypertension, peri-tumor edema and lymphatic metastasis: insights from a mathematical model. Cancer Res. 67:2729–2735

    Article  PubMed  CAS  Google Scholar 

  22. Joris I., H. F. Cuenoud, G. V. Doern, J. M. Underwood, G. Majno 1990 Capillary leakage in inflammation. A study by vascular labeling. Am. J. Pathol. 137:1353–1363

    PubMed  CAS  Google Scholar 

  23. Lee I., T. J. Demhartner, Y. Boucher, R. K. Jain, M. Intaglietta 1994 Effect of hemodilution and resuscitation on tumor interstitial fluid pressure, blood flow, and oxygenation. Microvasc. Res. 48:1–12

    Article  PubMed  CAS  Google Scholar 

  24. Less J. R., M. C. Posner, T. Skalak, N. Wolmark, R. K. Jain 1997 Geometric resistance to blood flow and vascular network architecture in human colorectal carcinoma. Microcirculation 4:25–33

    Article  PubMed  CAS  Google Scholar 

  25. Lichtenbeld H. C., N. Ferarra, R. K. Jain, L. L. Munn 1999 Effect of local anti-VEGF antibody treatment on tumor microvessel permeability. Microvasc. Res. 57:357–362

    Article  PubMed  CAS  Google Scholar 

  26. Lipowsky H. H., S. Usami, S. Chien 1980 In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat. Microvasc. Res. 19:297–319

    Article  PubMed  CAS  Google Scholar 

  27. Lu B., M. Figini, C. Emanueli, P. Geppetti, E. F. Grady, N. P. Gerard, J. Ansell, D. G. Payan, C. Gerard, N. Bunnett 1997 The control of microvascular permeability and blood pressure by neutral endopeptidase. Nat Med 3:904–907

    Article  PubMed  CAS  Google Scholar 

  28. Mchedlishvili G., M. Varazashvili, L. Gobejishvili 2002 Local RBC aggregation disturbing blood fluidity and causing stasis in microvessels. Clin. Hemorheol. Microcirc. 26:99–106

    PubMed  Google Scholar 

  29. Migliorini C., Y. Qian, H. Chen, E. Brown, R. Jain, L. Munn 2002 Red blood cells augment leukocyte rolling in a virtual blood vessel. Biophys. J. 83:1834–1841

    PubMed  CAS  Google Scholar 

  30. Milosevic M. F., A. W. Fyles, R. P. Hill 1999 The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis. Int. J. Radiat. Oncol. Biol. Phys. 43:1111–1123

    Article  PubMed  CAS  Google Scholar 

  31. Morikawa S., P. Baluk, T. Kaidoh, A. Haskell, R. K. Jain, D. M. McDonald 2002 Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160:985–1000

    PubMed  Google Scholar 

  32. Netti P. A., S. Roberge, Y. Boucher, L. T. Baxter, R. K. Jain 1996 Effect of transvascular fluid exchange on arterio-venous pressure relationship: implication for temporal and spatial heterogeneities in tumor blood flow. Microvasc. Res. 52:27–46

    Article  PubMed  CAS  Google Scholar 

  33. Padera T. P., B. R. Stoll, J. B. Tooredman, D. Capen, E. di Tomaso, R. K. Jain 2004 Pathology: cancer cells compress intratumour vessels. Nature 427:695

    Article  PubMed  CAS  Google Scholar 

  34. Qian Y. H., D. d’Humieres, P. Lallemand 1992 Lattice BGK models for Navier–Stokes equations. Europhys. Lett. 17:479–483

    Article  Google Scholar 

  35. Roose T., P. A. Netti, L. L. Munn, Y. Boucher, R. K. Jain 2003 Solid stress generated by spheroid growth estimated using a linear poroelasticity model small star, filled. Microvasc. Res. 66:204–212

    Article  PubMed  Google Scholar 

  36. Sarelius I. H., J. M. Kuebel, J. Wang, V. H. Huxley 2006 Macromolecule permeability of in situ and excised rodent skeletal muscle arterioles and venules. Am. J. Physiol. Heart Circ. Physiol. 290:H474–H480

    Article  PubMed  CAS  Google Scholar 

  37. Secomb, T. W., M. A. Konerding, C. A. West, M. Su, A. J. Young, and S. J. Mentzer. Microangiectasias: structural regulators of lymphocyte transmigration. Proc. Natl. Acad. Sci. U.S.A. 100:7231–7234, 2003

    Article  PubMed  CAS  Google Scholar 

  38. Sevick E. M., R. K. Jain 1989 Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity. Cancer Res. 49:3513–3519

    PubMed  CAS  Google Scholar 

  39. Sevick E. M., R. K. Jain 1991 Effect of red blood cell rigidity on tumor blood flow: increase in viscous resistance during hyperglycemia. Cancer Res. 51:2727–2730

    PubMed  CAS  Google Scholar 

  40. Sun C. H., C. Migliorini, L. L. Munn 2003 Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys. J. 85:208–222

    Article  PubMed  CAS  Google Scholar 

  41. Sun C. H., L. L. Munn 2005 Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. Biophys. J. 88:1635–1645

    Article  PubMed  CAS  Google Scholar 

  42. Sun C. H., L. L. Munn 2006 Influence of erythrocyte aggregation on leukocyte margination in postcapillary expansions: a lattice-Boltzmann analysis. Physica A 362:191–196

    Article  Google Scholar 

  43. Tong R. T., Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, R. K. Jain 2004 Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64:3731–3736

    Article  PubMed  CAS  Google Scholar 

  44. Willett, C. G., Y. Boucher, E. di Tomaso, D. G. Duda, L. L. Munn, R. T. Tong, D. C. Chung, D. V. Sahani, S. P. Kalva, S. V. Kozin, M. Mino, K. S. Cohen, D. T. Scadden, A. C. Hartford, A. J. Fischman, J. W. Clark, D. P. Ryan, A. X. Zhu, L. S. Blaszkowsky, H. X. Chen, P. C. Shellito, G. Y. Lauwers, and R. K. Jain. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer [erratum appears in Nat. Med. 2004 Jun;10(6):649]. Nat. Med. 10:145–147

    Google Scholar 

  45. Willett C. G., Y. Boucher, D. G. Duda, E. di Tomaso, L. L. Munn, R. T. Tong, S. V. Kozin, L. Petit, R. K. Jain, D. C. Chung, D. V. Sahani, S. P. Kalva, K. S. Cohen, D. T. Scadden, A. J. Fischman, J. W. Clark, D. P. Ryan, A. X. Zhu, L. S. Blaszkowsky, P. C. Shellito, M. Mino-Kenudson, G. Y. Lauwers 2005 Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J. Clin. Oncol. 23:8136–8139

    Article  PubMed  Google Scholar 

  46. Winkler F., S. V. Kozin, R. T. Tong, S. S. Chae, M. F. Booth, I. Garkavtsev, L. Xu, D. J. Hicklin, D. Fukumura, E. di Tomaso, L. L. Munn, R. K. Jain 2004 Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    PubMed  CAS  Google Scholar 

  47. Yuan F., Y. Chen, M. Dellian, N. Safabakhsh, N. Ferrara, R. K. Jain 1996 Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. PNAS 93:14765–14770

    Article  PubMed  CAS  Google Scholar 

  48. Yuan F., M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, R. K. Jain 1995 Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55:3752–3756

    PubMed  CAS  Google Scholar 

  49. Yuan F., M. Leunig, D. A. Berk, R. K. Jain 1993 Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc. Res. 45:269–289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. T. Padera, C. Migliorini, Y.H. Qian, H.D. Chen, M. Dupin, A. Mulivor, and C.K. Aidun for helpful discussions. This work was supported by NIH Grant R01 HL64240 (LLM) and P01 CA080124 (RKJ, LLM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance L. Munn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Jain, R.K. & Munn, L.L. Non-Uniform Plasma Leakage Affects Local Hematocrit and Blood Flow: Implications for Inflammation and Tumor Perfusion. Ann Biomed Eng 35, 2121–2129 (2007). https://doi.org/10.1007/s10439-007-9377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9377-8

Keywords

Navigation