Skip to main content

Quaternary Ammonium Compounds

  • Chapter
  • First Online:
Biomaterials Associated Infection

Abstract

The main cause of failure of biomedical implants is bacterial infections. Despite all efforts, it will never be possible to completely free operating theaters from bacteria, as human bodies contain already 1014 bacteria. Once on a surface, bacteria start proliferating, while protecting themselves with a slime layer against the immune system and administered antibiotics. A promising route to prevent or at least reduce bacterial infections caused by implants is by making surfaces of the devices antibacterial. One way to eradicate bacteria on implants is by contact killing.

Quaternary ammonium compounds (quats) are very potent biocides. The generally accepted mechanism is that quats destabilize the cytoplasmic membrane, which leads to leakage and eventually to cell death. Unfortunately, a similar mechanism provokes cytotoxicity. Fortunately, it is feasible to optimize the balance between biocidal activity and cytotoxicity by adapting the chemical structures.

Low molecular weight quats are effective, but leachable and thus only temporarily effective. Moreover, leachable quats will be transported throughout the whole body and may cause cell lysis. A more sustainable approach is to immobilize quats on surfaces. Although this development is still in an early stage in the last decade much progress has been made. There is a vast amount of literature describing successful in vitro experiments, and a number of papers have shown antibacterial activity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer B, Cookson B. Does microbial resistance or adaptations to biocides create a hazard in infection prevention and control? J Hosp Infect. 2010;76:200–5.

    Article  CAS  Google Scholar 

  2. Biocidal Product Directive. Commission Regulation (EC). 2003; No 2032/2003, November 4, 2003.

    Google Scholar 

  3. Friends of the earth, http://www.foe.org/sites/default/files/Nano-silverReport_US.pdf, 2009.

  4. Al-bataineh S, Britcher I, Groesser H. XPS characterization of the surface of immobilization of antibacterial furanones. Surface Sci. 2006;600:952–62.

    Article  CAS  Google Scholar 

  5. Kenawy E, Worley S, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8(5):1359–84.

    Article  CAS  Google Scholar 

  6. Ferreira L, Zumbuehl A. Non-leaching surfaces capable of killing microorganisms on contact. J Mater Chem. 2009;19:7796–806.

    Article  CAS  Google Scholar 

  7. Timofeeva L, Kleshcheva N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol. 2011;89:475–92.

    Article  CAS  Google Scholar 

  8. Vasilev K, Cook J, Griesser H. Antibacterial surfaces for biomedical devices. Expert Rev Med Devices. 2009;6(5):553–67.

    Article  Google Scholar 

  9. Tiller J. Antimicrobial surfaces. Adv Polym Sci. 2010. doi:10.1007/12_2010_101

  10. Gabriel G, Som A, Madkour A, Eren T, Tew G. Infectious disease: connecting innate immunity to biocidal polymers. Mater Sci Eng. 2007;R57:28–64.

    CAS  Google Scholar 

  11. Waschinski C, Herdes V, Schueler F, Tiller J. Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci. 2005;5:149–56.

    Article  CAS  Google Scholar 

  12. Kanazawa A, Ikeda T, Endo T. Novel polycationic biocides: synthesis and antibacterial activity of polymeric phosphonium salts. J Polym Sci A Polym Chem. 1993;31:335–43.

    Article  CAS  Google Scholar 

  13. Kanazawa A, Ikeda T. Multifunctional tetracoordinate phosphorus species with high self-organizing ability. Coord Chem Rev. 2000;198:117–31.

    Article  CAS  Google Scholar 

  14. Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Biopolymers (Peptide Science). 2000;55:4–30.

    Article  CAS  Google Scholar 

  15. Chen C, Cooper S. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002;23:3359–68.

    Article  CAS  Google Scholar 

  16. Lenoir S, Pagnoulle C, Galleni M, Compère P, Jérôme R, Detrembleur C. Polyolefin matrixes with permanent antibacterial activity: preparation, antibacterial activity, and action mode of the active species. Biomacromolecules. 2006;7:2291–6.

    Article  CAS  Google Scholar 

  17. Norris V, Chen M, Goldberg M, Voskuil J, McGurk G, Holland I. Calcium in bacteria: a solution to which problem? Mol Microbiol. 1991;5(4):775–8.

    Article  CAS  Google Scholar 

  18. Brizzolara R, Stamper D. The effect of covalent surface immobilization on the bactericidal efficacy of a quaternary ammonium compound. Surf Interface Anal. 2007;39:559–66.

    Article  CAS  Google Scholar 

  19. Lee S, Koepsel R, Morley S, Matyjaszewski K, Sun Y, Russell A. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules. 2004;5:877–82.

    Article  CAS  Google Scholar 

  20. Ohkura K, Sukeno A, Nagamunea H, Kourai H. Bridge-linked bis-quaternary ammonium anti-microbial agents: relationship between cytotoxicity and anti-bacterial activity of 5,50-[2,20-(tetramethylenedicarbonyldioxy)-diethyl]bis(3-alkyl-4-methylthiazonium iodide)s. Bioorg Med Chem. 2005;13:2579–87.

    Article  CAS  Google Scholar 

  21. Block S. Disinfectants, sterilization and preservation. Philadelphia, PA: Lippincott Williams & Wilkins; 2001. ISBN ISBN 0-683-30749-1.

    Google Scholar 

  22. Mazzola P, Jozala A, de Lencastre Novaes L, Moriel P, Penna T. Brazilian Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. J Pharm Sci. 2009;45(2):241–8.

    CAS  Google Scholar 

  23. McBain A, Ledder R, Moore L, Catrenich C, Gilbert P. Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl Environ Microbiol. 2004;70:3449–56.

    Article  CAS  Google Scholar 

  24. Etrych T, Leclercq L, Boustta M, Vert M. Polyelectrolyte complex formation and stability when mixing polyanions and polycations in salted media: a model study related to the case of body fluids. Eur J Pharm Sci. 2005;25:281–8.

    Article  CAS  Google Scholar 

  25. Poly(bishexamethylene biguanides) Arch. http://www.archchemicals.com/Fed/Corporate/MyAcct/msdsloc.htm.

  26. Polyquaternium BASF. http://worldaccount.basf.com/wa/NAFTA∼en_US/Catalog/Cosmetics/pi/BASF/product_inci/polyquaternium_16.

  27. Kroda K, Palermo E. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates antimicrobial and hemolytic activities. Biomacromolecules. 2009;10:1416–28.

    Article  Google Scholar 

  28. Sambhy V, Peterson B, Sen A. Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew Chem. 2008;120:1270–4.

    Article  Google Scholar 

  29. Gilbert P, Moore L. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99:703–15.

    Article  CAS  Google Scholar 

  30. Ikeda T, Yamaguchi H, Tazuke S. Molecular weight dependence of antibacterial activity in cationic disinfectants. J Bioact Compat Polym. 1990;5:31–41.

    Article  CAS  Google Scholar 

  31. Creavis WO200269709.

    Google Scholar 

  32. Creavis DE 10061251.

    Google Scholar 

  33. Creavis DE 10061250.

    Google Scholar 

  34. Creavis DE 10048614.

    Google Scholar 

  35. Creavis DE 10048613.

    Google Scholar 

  36. Creavis WO 200217724.

    Google Scholar 

  37. Creavis WO200119878.

    Google Scholar 

  38. Ciba DE1053783

    Google Scholar 

  39. Hoechst US5049383

    Google Scholar 

  40. Lewis G, Nguyen V, Cohen Y. Synthesis of poly(4-vinylpyridine) by reverse atom transfer radical polymerization. J Polym Sci A Polym Chem. 2007;45:5748–58.

    Article  CAS  Google Scholar 

  41. Cheng Z, Zhu X, Shi L, Neoh K, Kang E. Polymer microspheres with permanent antibacterial surfaces from surface-initiated atom transfer radical polymerization of 4-vinylptridine and quaternization. Surf Rev Lett. 2006;13(2 & 3):313–8.

    Article  CAS  Google Scholar 

  42. Lin J, Qiu S, Lewis K, Klibanov A. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng. 2003;83(2):168–72.

    Article  CAS  Google Scholar 

  43. Milovic N, Wang J, Lewis K, Klibanov A. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng. 2005;90(6):715–22.

    Article  CAS  Google Scholar 

  44. Klibanov A. Permanently microbiocidal materials coatings. J Mater Chem. 2007;17:2479–82.

    Article  CAS  Google Scholar 

  45. Wong S, Li Q, Veselinovic J, Kim B, Klibanov A, Hammond P. Bactericidal and virucidal ultrathin films assembled layer by layer from polycationic N-alkylated polyethylenimines and polyanions. Biomaterials. 2010;31:4079–87.

    Article  CAS  Google Scholar 

  46. Schaer T, Stuart S, Hsu B, Klibanov A. Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection. Biomaterials. 2012;33:1245–54.

    Article  CAS  Google Scholar 

  47. Mikhaylova A, Liesenfeld B, Moore D. Quick Med Technologies, Inc., Efficacy of BIOGUARD™ dressings utilizing advanced NIMBUS® technology. http://content.stockpr.com/qmdt/media/ea16ad90f18b558d673990c0c51b067e.pdf.

  48. ICI GB 702,268, filed 22 August 1949.

    Google Scholar 

  49. Liu N, Chen X, Park H, Liu C, Liu C, Meng X, et al. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr Polym. 2006;64:60–5.

    Article  CAS  Google Scholar 

  50. Kuroda K, Palermo E. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and haemolytic activities. Biomacromolecules. 2009;10:1416–28.

    Article  Google Scholar 

  51. Kuroda K, Caputo G, DeGrado W. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem Eur J. 2009;15:1123–33.

    Article  CAS  Google Scholar 

  52. Marchisio M, Bianciardi P, Longo T, Ferruti P, Ranucci E, Neri M. Comparison between the hemolytic and antibacterial activities of new quaternary ammonium polymers. J Biomater Sci Polym Ed. 1994;6(6):533–9.

    Article  CAS  Google Scholar 

  53. Kügler R, Bouloussa O, Rondelez F. Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology. 2005;151:1341–8.

    Article  Google Scholar 

  54. Murata H, Koepsel R, Matyjaszewski K, Russell A. Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28:4870–9.

    Article  CAS  Google Scholar 

  55. Aegis, http://www.aegismicrobeshield.com/

  56. Chisholm US 2008/0181862.

    Google Scholar 

  57. Biosafe US2006223962.

    Google Scholar 

  58. Biosafe US65722926.

    Google Scholar 

  59. Biosafe WO9932157.

    Google Scholar 

  60. Dokuritsu Gyosei JP2005068191.

    Google Scholar 

  61. Bioshield WO9903866.

    Google Scholar 

  62. Bioshield WO9742200.

    Google Scholar 

  63. Univ Emory WO9741876.

    Google Scholar 

  64. Lamba-Kohlin US200618837.

    Google Scholar 

  65. Corpura EP1493452.

    Google Scholar 

  66. Burlington, US4414268.

    Google Scholar 

  67. Kimberly-Clark US6712121.

    Google Scholar 

  68. Kimberly-Clark US10429502.

    Google Scholar 

  69. Johnson & Son US6528472.

    Google Scholar 

  70. Invista North America US6790797.

    Google Scholar 

  71. Reckitt Benckiser Inc US 7304022.

    Google Scholar 

  72. Ciba WO2008006744, WO2008132045, WO2008006744.

    Google Scholar 

  73. NDSU foundations US2008181862.

    Google Scholar 

  74. Nano X DE 102007020404.

    Google Scholar 

  75. NDSU Res Found WO9903866.

    Google Scholar 

  76. Oniv Emory WO9741876.

    Google Scholar 

  77. Procter & Gamble WO99/32539.

    Google Scholar 

  78. Gottenbos B, van der Mei H, Klatter F, Nieuwenhuis P, Busscher H. In vitro and in vivo antimicrobial activity of covalent coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials. 2002;23:1417–23.

    Article  CAS  Google Scholar 

  79. Lewis K, Klibanov A. Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol. 2005;23(7):343–8.

    Article  CAS  Google Scholar 

  80. Klibanov A, Liao C, Tiller J, Lewis K. Antimicrobial polymeric surfaces. WO02/085542 (= US7151139)

    Google Scholar 

  81. Tiller J, Liao C, Lewis K, Klibanov A. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA. 2001;98(11):5981–5.

    Article  CAS  Google Scholar 

  82. Lin J, Qiu S, Lewis K, Klibanov A. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated poly(ethylene imines). Biotechnol Prog. 2002;18:1082–6.

    Article  CAS  Google Scholar 

  83. Park D, Wang J, Klibanov A. One-step, painting-like coating procedures to make surfaces highly and permanently bactericidal. Biotechnol Prog. 2006;22:584–9.

    Article  CAS  Google Scholar 

  84. Haldar J, Chen J, Tumpey T, Gubareva L, Klibanov A. Hydrophobic polycationic coatings inactivate wild-type and zanamivir- and/or oseltamivir-resistant human and avian influenza viruses. Biotechnol Lett. 2008;30:475–9.

    Article  CAS  Google Scholar 

  85. Haldar J, An D, Alvarez de Cienfuegos L, Chen J, Klibanov A. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci USA. 2006;103(47):17667–71.

    Article  CAS  Google Scholar 

  86. Yudovin-Farber I, Beyth N, Weiss E, Domb A. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles. J Nanopart Res. 2010;12:591–603.

    Article  CAS  Google Scholar 

  87. Yudovin-Farber I, Golenser J, Beyth N, Weiss E, Domb A. Quaternary ammonium polyethyleneimine: antibacterial activity. J Nanomater. 2010; Article ID 826343, 11, doi:10.1155/2010/826343

  88. Cheng Z, Zhu X, Shi Z, Neoh K, Kang E. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization. Ind Eng Chem Res. 2005;44:7098–104.

    Article  CAS  Google Scholar 

  89. Kenawy E, Abdel-Hay F, El-Magd A, Mahmoud Y. Biologically active polymers: VII. Synthesis and antimicrobial activity of some crosslinked copolymers with quaternary ammonium and phosphonium groups. React Funct Polym. 2006;66:419–29.

    Article  CAS  Google Scholar 

  90. Hilpert K, Elliott M, Jenssen H, Kindrachuk J, Fjell C, Körner J, et al. Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol. 2009;16:58–69.

    Article  CAS  Google Scholar 

  91. Ferreira L, Langer R, Loose C, O’shaughnessy W, Zumbuehl A, Stephanopous S. Medical devices and coatings with non-leachable antibacterial peptides. WO2007/095393.

    Google Scholar 

  92. Statz A, Kuang J, Ren C, Barron A, Szleifer I, Messersmith P. Experimental theoretical investigation of chain length and surface coverage on fouling of surface grafted polypeptoids. Biointerphases. 2009;4(2):22–32.

    Article  Google Scholar 

  93. Tyco healthcare group US2007237812.

    Google Scholar 

  94. Nippon Soda WO20066118283.

    Google Scholar 

  95. Hodge US2003013794.

    Google Scholar 

  96. Arch WO2004100663.

    Google Scholar 

  97. Roby US2003236552.

    Google Scholar 

  98. Neste CHEM WO200112725.

    Google Scholar 

  99. Medtronic US 6033719, US 5928916, US5925552.

    Google Scholar 

  100. Becton Dickinson US2007202177.

    Google Scholar 

  101. Baxter WO200023124-A1

    Google Scholar 

  102. Sawan S, Shalon T, Subramanyam S, Yurmovetskiy A. Contact killing non-leaching antimicrobial materials. US5849311 (15 December 1998).

    Google Scholar 

  103. Sawan S, Shalon T, Subramanyam S, Yurmovetskiy A. Non-leaching antimicrobial films. US6030632 (29 February 2000).

    Google Scholar 

  104. Boelens J, Dankert J, Murk J, Weening J, van der Poll T, Dingemans K, et al. Biomaterial-associated persistence of staphylococcus epidermidis. J Infect Dis. 2000;181:1337–49.

    Article  CAS  Google Scholar 

  105. Broekhuizen C, de Boer L, Schipper K, Jones C, Quadir S, Feldman R, et al. Peri-implant tissue is an important niche for Staphylococcus epidermidis in experimental biomaterial-associated infection in mice in pericatheter macrophages. Infect Immun. 2007;75(3):1129–36.

    Article  CAS  Google Scholar 

  106. Sawan S, Shalon T, Subramanyam S, Yurmovetskiy A. Contact killing antimicrobial devices. US5817325 (6 October 1998).

    Google Scholar 

  107. Sambhy V, MacBride M, Peterson B, Sen A. Silver Bromide nanoparticles/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc. 2006;128:9798–808.

    Article  CAS  Google Scholar 

  108. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.

    Article  CAS  Google Scholar 

  109. Mei L, Loontjens T, Ren Y, van der Mei H, Busscher H. Contact-killing of adhering streptococci by a quaternary ammonium compound incorporated in an acrylic resin. Int J Artif Organs.

    Google Scholar 

Download references

Acknowledgments

The author wants to thank Dr. T. Dirks and Dr. A. Piermattei from DSM (in the Netherlands) for reading the manuscript carefully and for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Loontjens .

Editor information

Editors and Affiliations

Glossary

Coatings

Are polymer compositions that cover surfaces that determine the interfacial properties.

Polymers (macromolecules, plastics)

Are high molecular materials comprising numerous monomers units.

Quaternary ammonium compounds

Are compounds that comprise positively charged nitrogen moieties (R4N+X−).

Leachable antibacterial compounds

Are low molecular compounds that are able to release from a surface into the surroundings.

Contact-killing

Is the operating mechanism if bacteria are only killed upon direct contact with a surface.

Cytotoxicity

Determines the damage on human cells.

Biocompatibility

Is a measure for the acceptance of the body of foreign entities.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Loontjens, J.A. (2013). Quaternary Ammonium Compounds. In: Moriarty, T., Zaat, S., Busscher, H. (eds) Biomaterials Associated Infection. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1031-7_15

Download citation

Publish with us

Policies and ethics