Skip to main content

Mitochondrial DNA as Source Tracking Markers of Fecal Contamination

  • Chapter
  • First Online:
Microbial Source Tracking: Methods, Applications, and Case Studies

Abstract

Guidelines for water-quality monitoring have traditionally focused on the use of bacterial indicators. However, efforts to effectively mitigate fecal contamination necessitate greater clarity in source recognition. Host (mammalian and avian) epithelial cells are shed in the gut lumen and expelled in feces. These cells have multiple numbers of mitochondria, an organelle with its own genome, containing species-specific DNA sequences. These properties make mitochondrial DNA sequences (mtDNA) excellent molecular targets as they are host-specific and robust. This chapter describes the development of molecular methods such as PCR, qPCR, PCR with consensus primers, and DNA microarrays to detect and quantify mtDNA in effluents, influents, and environmental surface waters. These assays represent a paradigm shift in source tracking by detecting DNA from the host rather than its fecal bacterial population. Future development to increase the sensitivity of the assays and ease sample processing of large volumes is warranted. Contamination by nonfecal sources such as skin, hair, and sputum of swimmers needs to be evaluated in the context of providing data for source tracking, i.e., presence of human activity impacting the site. The significance of meat carryover in human feces, waste from kitchen garbage disposals and abattoir or industrial manufacturing requires further study to assess their impact on species-specific source tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J et al. (2002) Molecular Biology of the Cell. 4th edn. Garland Science, New York

    Google Scholar 

  • Albaugh GP, Iyengar V, Lohani A et al. (1992) Isolation of exfoliated colonic epithelial-cells,a novel, noninvasive approach to the study of cellular markers. Int J Cancer 52:347–350

    Article  PubMed  CAS  Google Scholar 

  • Allen M, Engstrom AS, Meyers S et al. (1998) Mitochondrial DNA sequencing of shed hairs and saliva on robbery caps: sensitivity and matching probabilities. J Forensic Sci 43(3):453–464

    PubMed  CAS  Google Scholar 

  • Andreasson H, Gyllensten U, Allen M (2002) Real-time DNA quantification of nuclear and mitochondrial DNA in forensic analysis. Biotechniques 33(2):402–411

    PubMed  CAS  Google Scholar 

  • Baker-Austin C, Rangdale R, Lowther J et al. (2010) Application of mitochondrial DNA analysis for microbial source tracking purposes in shellfish harvesting waters. Water Science & Technology 61(1):1–7

    Article  CAS  Google Scholar 

  • Baker-Austin C, Morris J, Lowther JA et al. (2009) Rapid identification and differentiation of agricultural faecal contamination sources using multiplex PCR. Lett Appl Microbiol 49(4):529–532

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen D, Clayton DA (1974) The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem 249(24):7991–7995

    CAS  Google Scholar 

  • Budowle B, Allard MW, Wilson MR et al. (2003) Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genomics Hum Genet 4:119–141

    Article  PubMed  CAS  Google Scholar 

  • Caldwell JM, Raley ME, Levine JF (2007) Mitochondrial multiplex real-time PCR as a source tracking method in fecal-contaminated effluents. Environ Sci Technol 41(9):3277–3283

    Article  PubMed  CAS  Google Scholar 

  • Caldwell JM, Levine JF (2009) Domestic wastewater influent profiling using mitochondrial real-time PCR for source tracking animal contamination. J Microbiological Methods 77:17–22

    Article  CAS  Google Scholar 

  • Cebula TA, Payne WL, Feng P (1995) Simultaneous identification of strains of Escherichia coli Serotype O157:H7 and their shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J Clin Microbiol 33:248–250

    PubMed  CAS  Google Scholar 

  • David H (1967) [On the mechanism of cell desquamation of the small intestine villi. (Electron microscopic studies)]. Virchows Arch Pathol Anat Physiol Klin Med 342:19–25

    Article  PubMed  CAS  Google Scholar 

  • Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363(1-2):71–82

    Article  PubMed  CAS  Google Scholar 

  • Eastwood GL (1977) Gastrointestinal epithelial renewal. Gastroenterology 72(5 Pt 1):962–975

    PubMed  CAS  Google Scholar 

  • Edelblum KL, Yan F, Yamaoka T et al. (2006) Regulation of apoptosis during homeostasis and disease in the intestinal epithelium. Inflamm Bowel Dis 12(5):413–424

    Article  PubMed  Google Scholar 

  • Fujimura T, Matsumoto T, Tanabe S et al. (2008) Specific discrimination of chicken DNA from other poultry DNA in processed foods using the polymerase chain reaction. Biosci Biotechnol Biochem 72:909–913

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez LJ (2007) Basic properties of mitochondria. In: Pon LA, Schon EA (eds) Methods in cell biology: Mitochondria 2nd edn. Academic Press, CA

    Google Scholar 

  • Gerba CP (2000) Assessment of enteric pathogen shedding by bathers during recreational activity and its impact on water quality. Quant. Microbiol. 2:55–68

    Article  Google Scholar 

  • Gireesh T, Nair PP, Sudhakaran PR (2004) Studies on the bioavailability of the provitamin A carotenoid, beta-carotene, using human exfoliated colonic epithelial cells. Br J Nutr 92(2):241–245

    Article  PubMed  CAS  Google Scholar 

  • Glaab WE, Skopek TR (1999) A novel assay for allelic discrimination that combines the fluorogenic 5’ polymerase chain reaction (TaqMan®) and mismatch amplification mutation assay. Mutation Research 430:1–12

    Article  PubMed  CAS  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. The Lancet 361(9356):512–519 Guyton AC (1976) Textbook of medical physiology. 5th edn. W.B. Saunders Company, Philadelphia, PA

    Google Scholar 

  • Hagedorn C, Crozier JB, Mentz KA et al. (2003) Carbon source utilization profiles as a method to identify sources of faecal pollution in water. J. Appl. Microbiol. 94(5):792–799

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn C, Robinson SL, Filtz JR et al. (1999) Determining sources of fecal pollution in a rural Virginia watershed with antibiotic resistance patterns in fecal streptococci. Appl Environ Microbiol 65(12):5522–5531

    PubMed  CAS  Google Scholar 

  • Hagedorn C, Weisberg SB (2009) Chemical-based fecal source tracking methods: current status and guidelines for evaluation. Rev Environ Sci Biotechnol 8(3):275–287

    Article  CAS  Google Scholar 

  • Hall PA, Coates PJ, Ansari B et al. (1994) Regulation of cell number in the mammalian gastrointestinal-tract - the importance of apoptosis. J Cell Sci 107:3569–3577

    PubMed  CAS  Google Scholar 

  • Hopwood AJ, Mannucci A, Sullivan KM (1996) DNA typing from human faeces. Int J Legal Med 108(5):237–243

    Article  PubMed  CAS  Google Scholar 

  • Kamra A, Kessie G, Chen JH et al. (2005) Exfoliated colonic epithelial cells: Surrogate targets for evaluation of bioactive food components in cancer prevention. J Nutrition 135:2719–2722

    CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  PubMed  CAS  Google Scholar 

  • Kortbaoui R, Locas A, Imbeau M et al. (2009) Universal mitochondrial PCR combined with species-specific dot-blot assay as a source-tracking method of human, bovine, chicken, ovine, and porcine in fecal-contaminated surface water. Water Res 43:2002–2010

    Article  PubMed  CAS  Google Scholar 

  • Lahiff S, Glennon M, O’Brien L et al. (2001) Species-specific PCR for the identification of ovine, porcine and chicken species in meta and bone meal (MBM). Mol Cell Probes 15(1):27–35

    Article  PubMed  CAS  Google Scholar 

  • Lipkin M (1973) Proliferation and differentiation of gastrointestinal cells. Physiol Rev 53:891–915

    PubMed  CAS  Google Scholar 

  • Lipkin M, Bell B, Sherlock P (1963) Cell proliferation kinetics. In: The gastrointestinal tract of man. I. Cell renewal in colon and rectum. J. Clin. Invest. 42(6):767–776

    CAS  Google Scholar 

  • Mangiapan G, Vokurka M, Schouls L et al. (1996) Sequence capture-PCR improves detection of mycobacterial DNA in clinical specimens. J Clin Microbiol 34(5):1209–1215

    PubMed  CAS  Google Scholar 

  • Marsh I, Whittington R, Millar D (2000) Quality control and optimized procedure of hybridization capture-PCR for the identification of Mycobacterium avium subsp. paratuberculosis in faeces. Mol Cell Probes 14(4):219–232

    Article  PubMed  CAS  Google Scholar 

  • Martellini A, Payment P, Villemur R (2005) Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Res 39(4):541–548

    Article  PubMed  CAS  Google Scholar 

  • Mehl LE (1991) A mathematical computer stimulation model for the development of colonic polyps and colon cancer. J. Surg. Oncol. 47(4):243–252

    Article  PubMed  CAS  Google Scholar 

  • Meyer R, Candrian U (1996) PCR-based DNA analysis for the identification and characterization of food components. Food Science Technology-Lebensmittel-Wissenschaft & Technologie 29:1–9

    CAS  Google Scholar 

  • Millar DS, Withey SJ, Tizard ML et al. (1995) Solid-phase hybridization capture of low-abundance target DNA sequences: application to the polymerase chain reaction detection of Mycobacterium paratuberculosis and Mycobacterium avium subsp. silvaticum. Anal Biochem 226(2):325–330

    Article  PubMed  CAS  Google Scholar 

  • Mulvaney SP, Cole CL, Kniller MD (2007) Rapid, femtomolar bioassays in complex matrices combining microfluidics and magnetoelectronics. Biosens Bioelectron 23:191–200

    Article  PubMed  CAS  Google Scholar 

  • Mulvaney SP, Myers KM, Sheehan PE (2008) Attomolar protein detection in complex sample matrices with semi-homogeneous fluidic force discrimination assays. Biosens Bioelectron 24(5):1109–1115

    Article  PubMed  Google Scholar 

  • Mulvaney SP, Ibe CN, Caldwell JM et al. (2009) Detection of mitochondrial DNA with the compact bead array sensor system (cBASS®). Proc SPIE 7167:7167OV1–10

    Google Scholar 

  • Notarnicola M, Cavallini A, Cardone R et al. (2000) K-ras and p53 mutations in DNA extracted from colonic epithelial cells exfoliated in faeces of patients with colorectal cancer. Digest Liver Dis 32:131–136

    Article  CAS  Google Scholar 

  • Plummer JD, Long SC (2007) Monitoring source water for microbial contamination: evaluation of water quality measures. Water Res 41:3716–3728

    Article  PubMed  CAS  Google Scholar 

  • Poe BG, Navratil M, Arriaga EA (2007) Absolute quantitation of a heteroplasmic mitochondrial DNA deletion using a multiplex three-primer real-time PCR assay. Anal Biochem 362(2):193–200

    Article  PubMed  CAS  Google Scholar 

  • Potten CS, Schofield R, Lajtha LG (1979) A comparison of cell replacement in bone marrow, testis and three regions of surface epithelium. Bioch Biophys Acta 560:281–299

    CAS  Google Scholar 

  • Schill WB, Mathes MV (2008) Real-time PCR detection and quantification of mine potential sources of fecal contamination by analysis of mitochondrial cytochrome b targets. Environ Sci Technol 42(14):5229–5234

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, Santo Domingo JW, Lamendella R et al. (2006) Competitive metagenomic DNA hybridization identifies host-specific microbial genetic markers in cow fecal samples. Appl Environ Microbiol 72(6):4054–4060

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, Kelty CA, Sivaganesan M et al. (2009) Quantitative PCR for genetic markers of human fecal pollution. Appl Environ Microbiol 75(17):5507–5513

    Article  PubMed  CAS  Google Scholar 

  • Shorter RG, Moertel CG, Titus JL et al. (1964) Cell kinetics. In: The jejunum and rectum of man. Amer J Digest Dis 9:760–763

    Article  CAS  Google Scholar 

  • Siewicki TC, Pullaro T, Pan W et al. (2007) Models of total and presumed wildlife sources of fecal coliform bacteria in coastal ponds. J Environ Manag 82:120–132

    Article  CAS  Google Scholar 

  • Sinton LW, Finlay RK, Hannah DJ (1998) Distinguishing human from animal faecal contamination in water: a review. New Zealand J Marine Freshwater Res 32(2):323–348

    Article  Google Scholar 

  • Slanetz LW, Bartley CH (1957) Numbers of enterococci in water, sewage, and feces determined by the membrane filter technique with an improved medium. J Bacteriol 74:591–595

    PubMed  CAS  Google Scholar 

  • Somarelli JA, Makarewicz JC, Sia R et al. (2007) Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints. J Environ Manag 82:60–65

    Article  CAS  Google Scholar 

  • Stoeckel DM, Harwood VJ (2007) Performance, design, and analysis in microbial source tracking studies. Appl Environ Microbiol 73(8):2405–2415

    Article  PubMed  CAS  Google Scholar 

  • Tamanaha CR, Mulvaney SP, Rife JC (2008) Magnetic labeling, detection, and system integration. Biosens Bioelectron 24:1–13

    Article  PubMed  CAS  Google Scholar 

  • Tepper CG, Studzinski GP (1993) Resistance of mitochondrial DNA to degradation characterizes the apoptotic but not the necrotic mode of human leukemia cell death. J Cell Biochem 52(3):352–361

    Article  PubMed  CAS  Google Scholar 

  • WHO (2003) Guidelines for safe recreational water environments Vol 1 Coastal and fresh waters. World Health Organization, Geneva p. 862003

    Google Scholar 

  • Zhang CL, Fowler MR, Scott NW et al. (2007) A TaqMan real-time PCR system for the identification and quantification of bovine DNA in meats, milks and cheeses. Food Control 18:1149–1158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Caldwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Caldwell, J., Payment, P., Villemur, R. (2011). Mitochondrial DNA as Source Tracking Markers of Fecal Contamination. In: Hagedorn, C., Blanch, A., Harwood, V. (eds) Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9386-1_10

Download citation

Publish with us

Policies and ethics