Skip to main content

On the H-Function With Applications

  • Chapter
  • First Online:
The H-Function

Abstract

Mellin–Barnes integrals are discovered by Salvatore Pincherle, an Italian mathematician in the year 1888. These integrals are based on the duality principle between linear differential equations and linear difference equations with rational coefficients. The theory of these integrals has been developed by Mellin (1910) and has been used in the development of the theory of hypergeometric functions by Barnes (1908). Important contributions of Salvatore Pincherle are recently given in a paper by Mainardi and Pagnini (2003). In the year 1946, these integrals were used by Meijer to introduce the G-function into mathematical analysis. From 1956 to 1970 lot of work has been done on this function, which can be seen from the bibliography of the book by Mathai and Saxena (1973a).

In the year 1961, in an attempt to discover a most generalized symmetrical Fourier kernel, Charles Fox (1961) defined a new function involving Mellin–Barnes integrals, which is a generalization of the G-function of Meijer. This function is called Fox’s H-function or the H-function. The importance of this function is realized by the scientists, engineers and statisticians due to its vast potential of its applications in diversified fields of science and engineering. This function includes, among others, the functions considered by Boersma (1962), Mittag-Leffler (1903), generalized Bessel function due to Wright (1934), the generalization of the hypergeometric functions studied by Fox (1928), and Wright (1935, 1940), Krätzel function (Krätzel 1979), generalized Mittag-Leffler function due to Dzherbashyan (1960), generalized Mittag-Leffler function due to Prabhakar (1971) and multi-index Mittag-Leffler function due to Kiryakova (2000), etc. Except the functions of Boersma (1962), the aforesaid functions cannot be obtained as special cases of the G-function of Meijer (1946), hence a study of the H-function will cover wider range than the G-function and gives general, deeper, and useful results directly applicable in various problems of physical, biological, engineering and earth sciences, such as fluid flow, rheology, diffusion in porous media, kinematics in viscoelastic media, relaxation and diffusion processes in complex systems, propagation of seismic waves, anomalous diffusion and turbulence, etc. see, Caputo (1969), Glöckle and Nonnenmacher (1993), Mainardi et al. (2001), Saichev and Zaslavsky (1997), Hilfer (2000), Metzler and Klafter (2000), Podlubny (1999), Schneider (1986) and Schneider and Wyss (1989) and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anandani P (1969) On some integrals involving generalized associated Legendre’s functions and H-functions. Proc Natl Acad Sci India Sect A 39:341–348

    MathSciNet  MATH  Google Scholar 

  • Anandani P (1969a) On some recurrence formulae for the H-function. Ann Polon Math 21: 113–117

    MathSciNet  MATH  Google Scholar 

  • Anandani P (1970) Some integrals involving associated Legendre functions of the first kind and the H-function. J Natur Sci Math 10:97–104

    MathSciNet  MATH  Google Scholar 

  • Anandani P (1970a) Some infinite series of H-functions-II. Vijnana Parishad Anusandhan Patrika 13:57–66

    MathSciNet  MATH  Google Scholar 

  • Bajpai SD (1969a) An integral involving Fox’s H-function and Whittaker functions. Proc Cambridge Philos Soc 65:709–712

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Barnes EW (1908) A new development of the theory of the hypergeometric functions. Proc London Math Soc 6(2):141–177

    Article  MATH  Google Scholar 

  • Boersma J (1962) On a function which is a special case of Meijer’s G-function. Comp Math 15: 34–63

    MathSciNet  Google Scholar 

  • Bora SL, Kalla SL (1971a) Some recurrence relations for the H-function. Vijnana Parishad Anusandhan Patrika 14:9–12

    MathSciNet  MATH  Google Scholar 

  • Braaksma BLJ (1964) Asymptotic expansions and analytic continuations for a class of Barnes integrals. Comp Math 15:239–341

    MathSciNet  Google Scholar 

  • Buckwar E, Luchko Y (1998) Invariance of partial differential equation of fractional order under the Lie group and scaling transformations. J Math Anal Appl 237(2):81–97

    Article  MathSciNet  Google Scholar 

  • Buschman RG (1972) Contiguous relations and related formulas for the H-function of Fox. Jnanabha Sect A 2:39–47

    MathSciNet  MATH  Google Scholar 

  • Buschman RG (1974a) The asymptotic expansion of an integral. Rend del Cir Mat7(3) Ser 6: 481–486

    Google Scholar 

  • Buschman RG (1974b) Partial derivatives of the H-function with respect to parameters expressed as finite sums and as integrals. Univ Nac Tucumán Rev Ser A 24:149–155

    MathSciNet  Google Scholar 

  • Caputo M (1969) Elasticitá e Dissipazione. Zanichelli, Bologna

    Google Scholar 

  • Chamati H, Tonchev NS (2006) Generalized Mittag-Leffler functions in the theory of finite-size scaling for systems with strong anisotropy and/or long-range interaction. J Phys A Math Gen 39:469–478

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chaurasia VBL (1976a) On some integrals involving Kampé de Fériet function and the H-function (Hindi). Vijnana Parishad Anusandhan Patrika 19:163–167

    MathSciNet  MATH  Google Scholar 

  • Dixon AL, Ferrar WL (1936) A class of discontinuous integrals. Quart J Math Oxford Ser 7:81–96

    Article  ADS  Google Scholar 

  • Dotsenko MR (1991) On some applications of Wright’s hypergeometric function. CR Acad Bulgare Sci 44:13–16

    MathSciNet  MATH  Google Scholar 

  • Dzherbashyan MM (1960) On the integral transformations generated by the generalized Mittag-Leffler function (in Russian). Izv AN Arm SSR 13(3):21-63

    Google Scholar 

  • Fox C (1928) The asymptotic expansion of generalized hypergeometric functions. Proc London Math Soc 27(2):389–400

    Article  MATH  Google Scholar 

  • Fox C (1961) The G and H-functions as symmetrical Fourier kernels. Trans Amer Math Soc 98:395–429

    MathSciNet  MATH  Google Scholar 

  • Gajic L, Stankovic B (1976) Some properties of Wright function. Publ Institut Math Beograd Nouvelle Ser 20(34):91–98

    MathSciNet  Google Scholar 

  • Gorenflo R, Iskenderov A, Luchko Y (2000) Mapping between solutions of fractional diffusion wave equations. Fract Calc Appl Anal 3:75–86

    MathSciNet  MATH  Google Scholar 

  • Gorenflo R, Luchko Y, Mainardi F (1999) Analytic properties and applications of the Wright function. Fract Cal Appl Anal 2:383–414

    MathSciNet  MATH  Google Scholar 

  • Goyal AN, Goyal GK (1967a) On the derivatives of the H-function. Proc Natl Acad Sci India Sect A 37:56–59

    MathSciNet  MATH  Google Scholar 

  • Gupta KC (1965) On the H-function. Ann Soc Sci Bruxelles Ser I 79:97–106

    MathSciNet  MATH  Google Scholar 

  • Gupta LC (1970) Some expansion formulae for Meijer’s G-function. Univ Nac Tucumán Rev Ser A 20:109–115

    Google Scholar 

  • Gupta KC, Jain UC (1966) The H-function II. Proc Nat Acad Sci India Sect A 36:594–609

    MathSciNet  MATH  Google Scholar 

  • Gupta KC, Jain UC (1968) On the derivative of the H-function. Proc Nat Acad Sci India Sect A 38:189–192

    MathSciNet  MATH  Google Scholar 

  • Gupta KC, Jain UC (1969) The H-function IV. Vijnana Parishad Anusandhan Patrika 12:25–30

    MathSciNet  MATH  Google Scholar 

  • Haubold HJ, Mathai AM (1986) Analytic representation of thermonuclear reaction rates. Studies in Applied Mathematics 75:123–138

    MathSciNet  MATH  Google Scholar 

  • Hilfer R (ed) (2000) Applications of fractional calculus in physics. World Scientific, Singapore

    MATH  Google Scholar 

  • Inayat-Hussain AA (1987a) New properties of hypergeometric series derivable from Feynmann integrals: I. Transformation and reduction formulae. J Phys A: Math Gen 20:4109–4117

    MathSciNet  MATH  Google Scholar 

  • Jain UC (1967) Certain recurrence relations for the H-function. Proc Nat Inst Sci India Part A 33:19–24

    MathSciNet  MATH  Google Scholar 

  • Kalla RN (1971) An application of a theorem on H-function. An Univ Timi Soara Ser Sti Mat 9:165–169

    MathSciNet  Google Scholar 

  • Kilbas AA, Saigo M (1998) Fractional calculus of the H-function. Fukuoka Univ Sci Rep 28:41–51

    MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Saigo M (1999) On the H-function. J Appl Math Stochast Anal 12:191–204

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Saigo M (2004) H-transforms, theory and applications. Chapman & Hall/CRC, Boca Raton, London, New York

    Book  MATH  Google Scholar 

  • Kilbas AA, Repin OA, Saigo M (2002) Generalized fractional integral transform with Gauss function kernels as G-transform. Integral Transform Spec Funct 13:285–307

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Saxena RK, Trujillo JJ (2006) Krätzel function as a function of hypergeometric type. Fract Calc Appl Anal 9:109–131

    MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Saigo M, Shlapakov SA (1993) Integral transforms with Fox’s H-function in spaces of summable functions. Integral Transform Spec Fucnt 1:87–103

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Saigo M, Trujillo JJ (2002) On the generalized Wright function. Fract Calc Appl Anal 4:437–460

    MathSciNet  Google Scholar 

  • Kiryakova VS (2000) Multiple (multi-index) Mittag-Leffler functions and relations to generalized fractional calculus. J Comput Appl Math 118:241–259

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lawrynowicz J (1969) Remarks on the preceding paper of P. Anandani Ann Polon Math 21: 120–123

    MathSciNet  Google Scholar 

  • Luchko YF (2000) Asymptotics of zeros of the Wright function. Z Anal Anwendungen 19(2): 583–595

    MathSciNet  MATH  Google Scholar 

  • Luchko YF, Gorenflo R (1998) Scale-variant solutions of a partial differential equation of fractional order. Fract Calc Appl Anal 1(1):63–78

    MathSciNet  MATH  Google Scholar 

  • Luke YL (1969) The special functions and their approximations, Vol I, II. Academic Press, New York

    MATH  Google Scholar 

  • Mainardi F (1994) On the initial value problem for the fractional diffusion-wave equation. In: Waves and Stability in Continuum Media (Bologna, 1993), Ser Adv Math Appl Sci 23: 246–251

    MathSciNet  Google Scholar 

  • Mainardi F (1997) Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpintery A, Mainardi F (eds) Fractals and fractional calculus in continuum mechanics, Udine, 1996, CISM Courses and Lectures 378:291–348

    MathSciNet  Google Scholar 

  • Mainardi F, Pagnini G (2003a) The Wright functions as solutions of the time-fractional diffusion equation. Appl Math Comput 141:51–62

    Article  MathSciNet  MATH  Google Scholar 

  • Mainardi F, Luchko Yu, Pagnini G (2001) The fundamental solution of the space-time fractional diffusion equation. Frac Calc Appl Anal 4:153–192

    MathSciNet  MATH  Google Scholar 

  • Marichev OI (1983) Handbook of integral transforms of higher transcendental functions: theory and algorithmic tables. Ellis Horwood, Chichester & Wiley, New York

    Google Scholar 

  • Mathai AM (1973a) A few remarks on the exact distributions of likelihood ratio criteria-I. Ann Inst Statist Math, 25:557–566

    Article  MathSciNet  MATH  Google Scholar 

  • Mathai AM (1993a) Appell’s and Humbert’s functions of matrix argument. Linear Algebra and Its Applications 183:201–221

    Article  MathSciNet  MATH  Google Scholar 

  • Mathai AM, Haubold HJ (1988) Modern problems in nuclear and neutrino astrophysics. Akademie-Verlag, Berlin

    Google Scholar 

  • Mathai AM, Saxena RK (1973a) On linear combinations of stochastic variables. Metrika 20(3):160–169

    Article  MathSciNet  MATH  Google Scholar 

  • Mathai AM, Saxena RK (1978) The H-function with applications in statistics and other disciplines. Wiley Eastern, New Delhi and Wiley Halsted, New York

    MATH  Google Scholar 

  • Meijer CS (1940) Über eine Erweiterung der Laplace-Transformation. Neder Akad Wetensch Proc 43:599–608, 702–711 = Indag Math 2:229–238, 269–278

    Google Scholar 

  • Meijer CS (1941a) Eine neus Erweiterung der Laplace-Transform. Neder Akad Wetensch Proc 44 727–737, = Indag Math 3: 338–348

    Google Scholar 

  • Meijer CS (1946) On the G-function I-VIII. Neder Akad Wetensch Proc 49:227–237; 344–356; 457–469; 632–641; 765–772; 936–943; 1063–1072; 1165–1175; = Indag Math 8:124–134; 213–225; 312–324; 391–400; 468–475; 595–602; 661–670; 713–723

    Google Scholar 

  • Mellin HJ (1910) Abrip einer einhaitlichen Theorie der Gamma und der Hypergeometrischen Funktionen Math Ann 68:305–337

    MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2000) The random walk a guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mikusinski J (1959) On the function whose Laplace transform is \(\exp (-{s}^{\alpha }), 0 < \alpha < 1\). Studia Math J 18:191–198

    MathSciNet  MATH  Google Scholar 

  • Mittag-Leffler GM (1903) Sur la nouvelle fonction \({E}_{\alpha }(x)\). CR Acad Sci Paris 137:554–558

    Google Scholar 

  • Nair VC (1972a) Differentiation formulae for the H-function-I. Math Student 40A:74–78

    Google Scholar 

  • Nair VC (1972b) The Mellin transform of the product of Fox’s H-function and Wright’s generalized hypergeometric function. Univ Studies Math 2:1–9

    MathSciNet  Google Scholar 

  • Oliver ML, Kalla SL (1971) On the derivative of Fox’s H-function. Acta Mexicana Ci Tech 5:3–5

    MathSciNet  MATH  Google Scholar 

  • Paris RB, Kaminski D (2001) Asymptotic and Mellin-Barnes Integrals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic, San Diego

    MATH  Google Scholar 

  • Prabhakar TR (1971) A singular integral equation with a generalized Mittag-Leffler function in kernel. Yokohama Math J 19:7–15

    MathSciNet  MATH  Google Scholar 

  • Prudnikov AP, Brychkov YA, Marichev OI (1990) Integrals and series, Vol 3, more special functions. Gordon and Breach Science, New York

    MATH  Google Scholar 

  • Raina RK (1976) Some recurrence relations for the H-function. Math Educ 10:A45–A49

    MathSciNet  Google Scholar 

  • Raina RK (1979) On certain expansions involving H-function. Comment Math Univ St Pauli 28(2):115–119

    MathSciNet  Google Scholar 

  • Raina RK, Koul CL (1977) Fractional derivatives of the H-function. Jnanabha 7:97–105

    MathSciNet  MATH  Google Scholar 

  • Saichev A, Zaslavsky GM (1997) Fractional kinetic equations: solution and applications. Chaos 7(4):753–764

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Saxena RK, Saigo M (2005) Certain properties of fractional calculus operators associated with generalized Mittag-Leffler function. Frac Calc Appl Anal 8:141–154

    MathSciNet  MATH  Google Scholar 

  • Saxena RK, Kalla SL, Kiryakova VS (2003) Relations connecting multi-index Mittag-Leffler functions and Riemann-Liouville fractional calculus. Algebras Groups and Geometries 20:363–386

    MathSciNet  MATH  Google Scholar 

  • Saxena RK, Mathai AM, Haubold HJ (2006) Solutions of certain fractional kinetic equations and a fractional diffusion equation. J Scientific Res 15:1–17

    MATH  Google Scholar 

  • Saxena RK, Mathai AM, Haubold HJ (2004a) Unified fractional kinetic equation and a fractional diffusion equation. Astrophysics & Space Science 290:299–310

    Article  ADS  Google Scholar 

  • Schneider WR (1986) Stable distributions, Fox function representation and generalization. In: Albeverio S, Casati G, Merilini D (eds) Stochastic processes in classical and quantum systems, Lecture Notes in Physics, Vol 262. Springer, Berlin, pp 497–511

    Chapter  Google Scholar 

  • Schneider WR, Wyss W (1989) Fractional diffusion and wave equations. J Math Phys 30:134–144

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Skibinski P (1970) Some expansion theorems for the H-function. Ann Polon Math 23:125–138

    MathSciNet  MATH  Google Scholar 

  • Srivastava A, Gupta KC (1970) On certain recurrence relations. Math Nachr 46:13–23

    Article  MathSciNet  MATH  Google Scholar 

  • Stankovic B (1970) On the function of EM Wright. Publ, de λ, Institut Mathematique, Nouvelle ser 10(24):113–124

    MathSciNet  Google Scholar 

  • Tonchev NS (2005) Finite-size scaling in systems with strong anisotropy: an analytic example. Communications of the Joint Institute for Nuclear Research E17-2005-148, Dubna

    Google Scholar 

  • Wiman A (1905) Über den Fundamental salz im der Theorie der Funktionen \({E}_{\alpha }(x)\). Acta Math 29:191–201

    Article  MathSciNet  MATH  Google Scholar 

  • Wright EM (1933) On the coefficients of power series having exponential singularities. J London Math Soc 8:71–79

    Article  Google Scholar 

  • Wright EM (1934) The asymptotic expansion of the generalized Bessel function. Proc London Math Soc 38(2):257–270

    Google Scholar 

  • Wright EM (1935) The asymptotic expansion of the generalized hypergeometric function. J London Math Soc 10:286–293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Haubold .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mathai, A.M., Saxena, R.K., Haubold, H.J. (2010). On the H-Function With Applications. In: The H-Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0916-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0916-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0915-2

  • Online ISBN: 978-1-4419-0916-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics