Skip to main content

The Dynamic Wind-Pollinated Mating System

  • Chapter
Conifer Reproductive Biology

Summary

The dynamic wind-pollinated mating system in conifers is more than a random game of pitch and catch; orderly forces work towards maximizing chances of pollen capture while minimizing selfing and interspecific hybridization. Aerodynamics of moving branches, leaves and female strobili favor pollen movement into ovules while more cryptic molecular mechanisms influence paternal parent choice from pollination onward to seed maturity. Outcrossing is the general outcome for most conifers but a few interesting exceptions include mixed mating systems, selfing, hybridization, reproductive sterility and the singular case of paternal apomixis. Self-pollination occurs at moderate rates yet few selfed seed are recovered in some of the Pinaceae; most selfed embryos die before reaching maturity so this is known as the embryo lethal system. Hybrid matings can be blocked by a few pre-zygotic barriers but more often matings between close relatives produce viable, fertile F1 offspring without a change in ploidy. Conifer reproduction is often abundant to the point of nuisance; it is not unusual for a conifer's wind-pollinated mating system to have a genetic footprint extending tens or even hundreds of kilometres from adult trees. At the other extreme, rare cases of reproductive steri lity are reported for both the Pinaceae and the Cupressaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyle, T. and E. Morgenstern. 1986. Estimates of outcrossing rates in six populations of black spruce in central New Brunswick. Silvae Genetica 35: 102–106.

    Google Scholar 

  • Brown, A. 1990. Genetic characterization of plant mating systems. Editor: B. Weir. In: Plant Populations, Genetics, Breeding and Genetic Resources. Sinauer Associates, Sunderland MA, pp. 145–162.

    Google Scholar 

  • Cresswell, J., K. Henning, et al. 2007. Conifer ovulate cones accumulate pollen principally by impaction. Proceedings of the National Academy of Sciences USA 104: 18141–18144.

    Article  CAS  Google Scholar 

  • Dyer, R. and V. Sork. 2001. Pollen pool heterogeneity in shortleaf pine, Pinus echinata Mill. Molecular Ecology 10: 859–866.

    Article  PubMed  CAS  Google Scholar 

  • Edwards-Burke, M., J. Hamrick, et al. 1997. Frequency and direction of hybridization in sympatric populations of Pinus taeda and P. echinata (Pinaceae). American Journal of Botany 84: 879–886.

    Article  CAS  Google Scholar 

  • Erickson, V. and W. Adams. 1989. Mating success in a coastal Douglas-fir seed orchard as affected by distance and floral phenology. Canadian Journal of Forest Research 19: 1248–1255.

    Google Scholar 

  • Friedman, S. and W. Adams. 1985. Levels of outcrossing in two loblolly pine seed orchards. Silvae Genetica 34: 157–162.

    Google Scholar 

  • Ge, S., D. Hong, et al. 1998. Population genetic structure and conservation of an endangered conifer, Cathaya argyrophylla (Pinaceae). International Journal of Plant Sciences 159: 351–357.

    Article  Google Scholar 

  • Grant, V. 1981. Plant Speciation. Columbia Press, New York.

    Google Scholar 

  • Greenwood, M. 1980. Reproductive development in loblolly pine. I. The early development of male and female strobili in relation to the long shoot growth behavior. American Journal of Botany 67: 1414–1422.

    Google Scholar 

  • Greenwood, M. 1986. Gene exchange in loblolly pine: the relation between pollination mechanisms, female receptivity and pollen viability. American Journal of Botany 73: 1433–1451.

    Article  Google Scholar 

  • Hagman, M. 1975. Incompatibility in forest trees. Proceedings of the Royal Society of London B 188: 313–326.

    Article  Google Scholar 

  • Hosoo, Y., E. Yoshii, et al. 2005. A histological comparison of the development of pollen and female gametophytes in fertile and sterile Cryptomeria japonica. Sexual Plant Reproduction 18: 81–89.

    Article  Google Scholar 

  • Innes, D. and G. Ringius. 1990. Mating system and genetic structure of two populations of white spruce (Picea glauca) in eastern Newfoundland. Canadian Journal Botany 68: 1661–1666.

    Google Scholar 

  • Knowles, P., G. Furnier, et al. 1987. Significant levels of self-fertilization in natural populations of tamarack. Canadian Journal of Botany 65: 1087–1091.

    Article  Google Scholar 

  • Koski, V. 1971. Embryonic lethals of Picea abies and Pinus sylvestris. Communicationes Instituti Forestalia Fennica 75: 1–30.

    Google Scholar 

  • Krakowski, J., S. Aitken, et al. 2003. Inbreeding and conservation in whitebark pine. Conservation Genetics 4: 581–593.

    Article  CAS  Google Scholar 

  • Krutovskii, K., D. Politov, et al. 1995. Isozyme study of population genetic structure, mating system and phylogenetic relationships of the five stone pine species (subsection Cembrae, section Strobi, subgenus Strobus). Editors: P. Baradat, W.T. Adams, G. Muller-Starck. In: Population Genetics and Conservation of Forest Trees. Springer, The Netherlands, pp. 270–304.

    Google Scholar 

  • Kuittinen, H. and O. Savolainen. 1992. Picea omorika is a self-fertile but outcrossing conifer. Heredity 68: 183–187.

    Article  Google Scholar 

  • Ledig, F., V. Jacob-Cervantes, et al. 1997. Recent evolution and divergence among populations of a rare Mexican endemic, Chihuahua spruce, following Holocene climatic warming. Evolution 51: 1815–1827.

    Article  Google Scholar 

  • Liu, Z.-L., D. Zhang, et al. 2003. Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization. Theoretical and Applied Genetics 106: 198–204.

    PubMed  CAS  Google Scholar 

  • Ma, X.-F., A. Szmidt, et al. 2006. Genetic structure and evolutionary history of a diploid hybrid pine Pinus densata inferred from the nucleotide variation at seven gene loci. Molecular Biology and Evolution 23: 807–816.

    Article  PubMed  CAS  Google Scholar 

  • Mason, H. 1949. Evidence of the genetic submergence of Pinus remorata. Editor: G. Simpson. In: Genetics, Speciation and Paleontology. Princeton University Press, Princeton, NJ, 474 p.

    Google Scholar 

  • Matos, J. and B. Schaal. 2000. Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization. Evolution 54: 1218–1233.

    PubMed  CAS  Google Scholar 

  • McWilliam, J. 1959. Interspecific incompatibility in Pinus. American Journal of Botany 46: 425–433.

    Article  Google Scholar 

  • Mitton, J. 1992. The dynamic mating system of conifers. New Forests 6: 197–216.

    Article  Google Scholar 

  • Mitton, J., Y. Linhart, et al. 1977. Observations on the genetic structure and mating system of ponderosa pine in the Colorado Front Range. Theoretical Applied Genetics 7: 5–13.

    Google Scholar 

  • Mitton, J., Y. Linhart, et al. 1981. Estimation of outcrossing in ponderosa pine, Pinus ponderosa Laws., from patterns of segregation of protein polymorphisms and from frequencies of albino seedlings. Silvae Genetica 30: 117–121.

    Google Scholar 

  • Mitton, J. and C. Williams. 2006. Gene flow in conifers. pp. 147–168. Chapter 9. Editor: C.G. Williams. In: Landscapes, Genomics and Transgenic Conifers. Springer, Dordrecht, The Netherlands, 270 p.

    Google Scholar 

  • Moran, G., J. Bell, et al. 1980. The genetic structure and levels of inbreeding in a Pinus radiata seed orchard. Silvae Genetica 29: 190–193.

    Google Scholar 

  • Morgante, M., G. Vendramin, et al. 1991. Effects of stand density on outcrossing rate in Norway spruce (Picea abies) populations. Canadian Journal Botany 69: 2704–2708.

    Article  Google Scholar 

  • Muona, O. and A. Harju. 1989. Effective population sizes, genetic variability and mating system in a natural stands and seed orchards of Pinus sylvestris. Silvae Genetica 38: 221–228.

    Google Scholar 

  • Niklas, K. 1982. Simulated and empiric wind pollination patterns of conifer cones. Proceedings National Academy of Sciences U.S.A. 79: 510–514.

    Article  CAS  Google Scholar 

  • Niklas, K. 1984. The motion of windborne pollen grains around conifer ovulate cones: implications on wind pollination. American Journal of Botany 71: 356–374.

    Article  Google Scholar 

  • Niklas, K. 1985. Wind pollination — a study in chaos. American Scientist 73: 462–470.

    Google Scholar 

  • O'Connell, L. 2003. The evolution of inbreeding in western red cedar (Thuja plicata: Cupressaceae). Department of Forest Sciences, Faculty of Forestry. University of British Columbia, Vancouver, BC, 162 p.

    Google Scholar 

  • Perry, D. and P. Knowles. 1990. Evidence of high self- fertilization in natural populations of eastern white cedar (Thuja occidentalis). Canadian Journal of Botany 68: 663–668.

    Article  Google Scholar 

  • Pichot, C., M. El-Maataoi, et al. 2001. Surrogate mother for endangered Cupressus. Nature 412: 39.

    Article  PubMed  CAS  Google Scholar 

  • Price, R., A. Liston, et al. 1998. Phylogeny and systematics of Pinus. Editor: D. Richardson. In: Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge UK, pp. 49–68

    Google Scholar 

  • Richards, A. 1997. Plant Breeding Systems. Chapman & Hall, London.

    Google Scholar 

  • Righter, F. and J. Duffield. 1951. A summary of interspecific crosses in the genus Pinus made at the Institute of Forest Genetics. Journal of Heredity 42: 75–80.

    PubMed  CAS  Google Scholar 

  • Sax, H. 1932. Chromosome pairing in Larix species. Journal of the Arnold Arboretum 13: 368–373.

    Google Scholar 

  • Sax, K. 1960. Meiosis in interspecific pine hybrids. Forest Science 6: 135–138.

    Google Scholar 

  • Sarvas, R. 1962. Investigations on the flowering and seed crop of Pinus silvestris. Communicationes Instituti Forestalis Fennica 53: 1–198.

    Google Scholar 

  • Saylor, L. and B. Smith. 1966. Meiotic irregularity in species and interspecific hybrids of Pinus. American Journal of Botany 53: 453–468.

    Article  Google Scholar 

  • Schoeder, S. 1989. Outcrossing rates and seed characteristics in damaged natural populations of Abies alba. Silvae Genetica 38: 185–189.

    Google Scholar 

  • Schuster, W. and J. Mitton. 2000. Paternity and gene dispersal in limber pine (Pinus flexilis James). Heredity 84: 348–361.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, M. and C. Williams. 2008. Comparative mapping among subsection Australes (genus Pinus, family Pinaceae). Genome 51: 320–331.

    Article  PubMed  CAS  Google Scholar 

  • Siegismund, H. and E. Kjaer. 1997. Outcrossing rates in two stands of noble fir (Abies procera Rehd.) in Denmark. Silvae Genetica 46: 144–146.

    Google Scholar 

  • Stauffer, A. and W. Adams. 1993. Allozyme variation and mating system of three Douglas-fir stands in Switzerland. Silvae Genetica 42: 254–258.

    Google Scholar 

  • Stone, E. and J. Duffield. 1950. Hybrids of sugar pine by embryo culture. Journal of Forestry 48: 200–201.

    Google Scholar 

  • Takaso, T., P. von Aderkas, et al. 1996. Prefertilization events in ovules of Pseudotsuga: ovular secretion and its influence on pollen tubes. Canadian Journal of Botany 74: 1214–1219.

    Article  Google Scholar 

  • von Aderkas, P., G. Rouault, et al. 2005a. Multinucleate storage cells in Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) and the effect of seed parasitism by the chalcid Megastigmus spermotrophus Wachtl. Heredity 94: 616–622.

    Article  CAS  Google Scholar 

  • von Aderkas, P., G. Rouault, et al. 2005b. Seed parasitism redirects ovule development in Douglas fir. Proceeding of the Royal Society B 272: 1491–1496.

    Article  Google Scholar 

  • Wang, X.-R., A. Szmidt, et al. 2001. Genetic composition and diploid speciation of a high mountain pine, Pinus densata, native to the Tibetan plateau. Genetics 159: 337–346.

    PubMed  CAS  Google Scholar 

  • Williams, C. 2006. The question of commercializing transgenic conifers. pp. 31–43. Editor: C.G. Williams. In: Landscapes, Genomics and Transgenic Conifers. Springer, Dordrecht, The Netherlands, 270 p.

    Chapter  Google Scholar 

  • Williams, C. 2008. Selfed embryo death in Pinus taeda: a phenotypic profile. New Phytologist 178: 210–222.

    Article  PubMed  Google Scholar 

  • Williams, C., K. Joyner, et al. 2002. Genomic consequences of interspecific Pinus spp. hybridisation. Biological Journal of the Linnean Socirty 75: 503–508.

    Article  Google Scholar 

  • Williams, C., S. LaDeau, et al. 2006. Modeling seed dispersal distances: implications for transgenic Pinus taeda. Ecological Applications 16: 117–124.

    Article  PubMed  Google Scholar 

  • Wilson, V. and J. Owens. 2003. Histology of sterile male and female cones in Pinus monticola (western white pine). Sexual Plant Reproduction 15: 301–310.

    Google Scholar 

  • Zobel, B. 1951. The natural hybrid between Coulter and Jeffrey pines. Evolution 5: 405–413.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2009). The Dynamic Wind-Pollinated Mating System. In: Conifer Reproductive Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9602-0_8

Download citation

Publish with us

Policies and ethics