Skip to main content

The Male Gametophyte Enclosed in a Pollen Wall

  • Chapter
Conifer Reproductive Biology
  • 1271 Accesses

Summary

All modern conifers follow a basic plan for male reproduction: the male strobilus is composed of fertile cones scales or sporophylls attached to a central cone axis. Each sporophyll has microsporangia or pollen sacs attached to its underside. Each pollen sac contains many pollen mother cells (PMC) and each pollen mother cell undergoes meiosis then gives rise to four microspores after meiosis. Each microspore develops into a multicellular, mobile male gametophyte enclosed inside a pollen wall. Pollen grains are released for aerial transport by dehiscence of the male strobilus. Although most pollen grains do fall near the adult tree, a small fraction will travel hundreds of kilometers from source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aylor, D. 2002. Settling speed of corn (Zea mays) pollen. Journal of Aerosol Sciences 33: 1601–1607.

    Article  CAS  Google Scholar 

  • Baker, J. and O. Langdon. 1990. Pinus taeda L. Loblolly Pine. In: Silvics of North America, Volume 1, Conifers,. Agriculture Handbook 654. Forest Service. United States Department of Agriculture. Washington, DC. pp. 497–512.

    Google Scholar 

  • Bessey, C. 1883. Remarkable fall of pine pollen. American Naturalist 17: 658.

    Google Scholar 

  • Blush, T. 1986. Seasonal and diurnal patterns of pollen flight in a loblolly pine seed orchard. pp. 150–159. In: Proceedings IUFRO Conference, Williamsburg VA, October 13–17.

    Google Scholar 

  • Bohne, G., E. Richter, et al. 2003. Diffusion barriers of tripartite sporopollenin microcapsules prepared from pine pollen. Annals of Botany 92: 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Bohne, G., H. Woehlecke, et al. 2005. Water relations of the pine exine. Annals of Botany 96: 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, W. 1978. Heat accumulation: An easy way to anticipate the flowering of southern pines. Journal of Forestry 76: 20–23.

    Google Scholar 

  • Bramlett, D. and F. Bridgwater. 1989. Pollen development classification system for loblolly pine. In Proc 20th Southern Forest Tree Improvement Conference Charleston SC. pp. 116–121.

    Google Scholar 

  • Bramlett, D. and F. Matthews. 1991. Storing loblolly pine pollen. Southern Journal of Applied Forestry 15: 153–157.

    Google Scholar 

  • Cain, S. 1940. The identification of species in fossil pollen of Pinus by size-frequency determinations. American Journal of Botany 27: 301–308.

    Article  Google Scholar 

  • Chesnoy, L. 1987. La reproduction sexuée des Gymnospermes. Bulletin of the Botanical Society of France 134: 51–56.

    Google Scholar 

  • Chichiricco, G. and E. Pacini. 2008. Cupressus arizonica pollen wall zonation and in vitro hydration. Pl. Syst. Evol. 270: 231–242.

    Article  Google Scholar 

  • Clark, J., S. Fastie, et al. 1998. Reid's paradox of rapid plant migration - Dispersal theory and interpretation of paleoecological records. Bioscience 48: 13–24.

    Article  Google Scholar 

  • Colwell, R. 1951. The use of radioactive isotopes in determining spore distribution patterns. American Journal of Botany 38: 511–523.

    Article  Google Scholar 

  • Dickinson, H. and P. Bell. 1976. Development of the tapetum in Pinus banksiana preceding spo-rogenesis. Annals of Botany 40: 103–113.

    Google Scholar 

  • Di-Giovanni, F. and P. Kevan. 1991. Factors affecting pollen dynamics and its importance to pollen contamination: a review. Canadian Journal Forest Research 21: 1155–1170.

    Article  Google Scholar 

  • Di-Giovanni, F., P. Kevan, et al. 1996. Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario, Canada. Forest Ecology and Management 83: 87–97.

    Article  Google Scholar 

  • Doyle, J. and M. O'Leary. 1935. Pollination in Pinus. Proceedings of the Royal Dublin Society 21: 181–190.

    Google Scholar 

  • Engel, M., A. Chaboud, et al. 2003. Sperm cells of Zea mays may have a complex complement of mRNAs. Plant Journal 34: 697–707.

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut, G. 1961. Untersuchungen uber die Morphologie und Okologie der Pollenkorner hei-mischer und fremdlandischer Waldbaume. Forstwiss. Forsch. 15: 1–68.

    Google Scholar 

  • Erdtman, G. 1937. Pollen grains recovered from the atmosphere over the Atlantic. Medd. Göteborgs Bot. Trädg 12: 185–196.

    Google Scholar 

  • Fernando, D., J. Owens, et al. 2001. RNA and protein synthesis during in vitro pollen germination and tube elongation in Pinus monticola and other conifers. Sexual Plant Reproduction 13: 259–264.

    Article  CAS  Google Scholar 

  • Fernando, D., M. Lazarro, et al. 2005. Growth and development of conifer pollen tubes. Sexual Plant Reproduction 18: 149–162.

    Article  Google Scholar 

  • Frankis, R. 1990. RNA and protein synthesis in germinating pine pollen. Journal of Experimental Botany 41: 1469–1473.

    Article  CAS  Google Scholar 

  • Friedman, W. 1993. The evolutionary history of the seed plant male gametophyte. Trends in Ecology and Evolution 8:15–20.

    Article  Google Scholar 

  • Gifford, E. and A. Foster 1989. Morphology and evolution of vascular plants. New York, W.H. Freeman Company.

    Google Scholar 

  • Greenwood, M. 1986. Gene exchange in loblolly pine: the relation between pollination mechanism, female receptivity and pollen availability. American Journal of Botany 73: 1443–1451.

    Article  Google Scholar 

  • Hart, J. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269–307.

    Google Scholar 

  • Harrison, D. and M. Slee. 1992. Long shoot terminal bud development and the differentiation of pollen- and seed-cone buds in Pinus caribaea var. hondurensis. Canadian Journal of Forestry Research 22: 1565–1668.

    Article  Google Scholar 

  • Hengeveld, R. 1989. Dynamics of Biological Invasions. Chapman and Hall, London.

    Google Scholar 

  • Hesselman, H. 1919. Iakttagelser över skogstradspollens spridningförmÃ¥ga. Medd Skogsöfrsöksanst 16: 27–60.

    Google Scholar 

  • Horn, H. 2005. Eddies at the gates. Nature 436: 179.

    Article  CAS  Google Scholar 

  • Jackson, S. and M. Lyford. 1999. Pollen dispersal models in Quaternary plant ecology: assumptions, parameters and prescriptions. Botanical Review 65: 39–75.

    Article  Google Scholar 

  • Jett, J., D. Bramlett, et al. 1993. Pollen collection, storage and testing. Editor: D.L. Bramlett. In: Advances in Pollen Management, Agricutlural Handbook 698. Government Printing Office, Washington DC. 101 p.

    Google Scholar 

  • Katul, G., A. Poporato, et al. 2006. Mechanistic analytical models for long-distance seed dispersal by wind. American Naturalist 166: 368–381.

    Google Scholar 

  • Katul, G., C. Williams, et al. 2006. Dispersal of transgenic conifer pollen. Editor: C.G. Williams. In: Landscapes, Genomics and Transgenic Conifers. Springer, Dordrecht, The Netherlands. pp. 121–143.

    Chapter  Google Scholar 

  • Koski, V. 1970. A study of pollen dispersal as a mechanism of gene flow in conifers. Comm. Inst. For. Fenn. 70: 1–78.

    Google Scholar 

  • Kuparinen, A. 2006. Mechanistic models for wind-dispersal. Trends in Plant Sciences 6: 296–301.

    Article  CAS  Google Scholar 

  • LaDeau, S. and J. Clark. 2006. Annual pollen production in Pinus taeda grown under elevated CO2. Functional Ecology 20: 541–547.

    Article  Google Scholar 

  • Lanner, R. 1966. Needed: a new approach to the study of pollen dispersion. Silvae Genetica 15: 50–52.

    Google Scholar 

  • Lian, C., M. Miwa, et al. 2001. Outcrossing and paternity analysis of Pinus densiflora (Japanese red pine) by microsatellite polymorphism. Heredity 87: 88–98.

    Article  PubMed  CAS  Google Scholar 

  • Lindgren, D., L. Paule, et al. 1975. Can viable pollen carry Scots pine genes over long distances? Grana 34: 64–69.

    Article  Google Scholar 

  • McDonald, J. 1962. Collection and washout of airborne pollen and spores of raindrops. Science 135: 435–437.

    Article  PubMed  Google Scholar 

  • Nathan, R., G. Katul, et al. 2002. Mechanisms of long-distance dispersal of seeds by wind. Nature 418: 409–413.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, R. and G. Hewitt. 1994. The genetic consequences of long-distance dispersal during colonization. Heredity 72: 312–317.

    Article  Google Scholar 

  • Niklas, K. 1984. The motion of windborne pollen grains around conifer ovulate cones — implications on wind pollination. American Journal of Botany 71: 356–374.

    Article  Google Scholar 

  • Owens, J. and M. Molder. 1984. The reproductive cycle of lodgepole pine. Victoria, BC, Information Services Branch, British Columbia Ministry of Forests.

    Google Scholar 

  • Parker, S. and T. Blush. 1996. Quantifying pollen production of loblolly pine (Pinus taeda L.) seed orchard clones. Westvaco Forest Research Report. 163 p.

    Google Scholar 

  • Pettit, J. 1985. Pollen tube development and characteristics of the protein emission in conifers. Annals Botany 56: 379–397.

    Google Scholar 

  • Pulkkinen, P., and A. Rantio-Lahtimaki. 1995. Viability and seasonal distribution patterns of Scots pine pollen in Finland. Tree Physiology 15: 515–518.

    PubMed  Google Scholar 

  • Reichman, J., L. Watrud, et al. 2006. Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Molecular Ecology 15: 4243–4255.

    Article  PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio, J.J. and L. Gil. 2005. Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94: 13–22.

    Article  PubMed  CAS  Google Scholar 

  • Rousseau, D.-D., P. Schevin, et al. 2006. New evidence of long distance pollen transport to southern Greenland in late spring. Review of Palaeobotany & Palynology 141: 272–286.

    Google Scholar 

  • Rowley, J., J. Skvarla, et al. 2000. Microsporogenesis in Pinus sylvestris L. VIII. Tapetal and late pollen grain development. Plant Syst. Evol. 225: 201–244.

    Article  Google Scholar 

  • Rudall, P. and R. Bateman. 2007. Developmental bases for key innovations in the seed-plant microgametophyte. Trends in Plant Science 12: 317–326.

    Article  PubMed  CAS  Google Scholar 

  • Runions, C. and J. Owens. 1999. Pollination of Picea orientalis (Pinaceae): saccus morphology governs pollen buoyancy. American Journal of Botany 86: 190–197.

    Article  Google Scholar 

  • Schwendemann, A., G. Wang, et al. 2007. Aerodynamics of saccate pollen and its implications for wind pollination. American Journal of Botany 94: 1371–1381.

    Article  Google Scholar 

  • Singh, H. 1978. Embryology of gymnosperms. Berlin, Gebruder Borntraeger.

    Google Scholar 

  • Smouse, P., R. Dyer, et al. 2001. Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55: 260–271.

    PubMed  CAS  Google Scholar 

  • Strand, L. 1957. Pollen dispersal. Silvae Genetica 6: 129–136.

    Google Scholar 

  • Tomlinson, P. 1994. Functional morphology of saccate pollen in conifers with special reference to the Podocarpaceae. International Journal of Plant Sciences 155: 699–715.

    Article  Google Scholar 

  • Tyldesley, J. 1973. Long-range transmission of tree pollen to Shetland. I. sampling and trajectories. New Phytologist 72: 175–181.

    Article  Google Scholar 

  • Wang, C.-W., T. Perry, et al. 1960. Pollen dispersion of slash pine (Pinus elliottii Englem.) with special reference to seed orchard management. Silvae Genetica 9: 78–86.

    Google Scholar 

  • Williams, C. 2008. Aerobiology of Pinus taeda pollen clouds. Canadian Journal of Forest Research 38: 2177–2188.

    Article  Google Scholar 

  • Young, L. and R. Stanley 1963. Incorporation of tritated nucleosides thymidine, uridine and cysti-dine in nuclei of germinating pine pollen. Nucleus 6: 83–90.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2009). The Male Gametophyte Enclosed in a Pollen Wall. In: Conifer Reproductive Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9602-0_5

Download citation

Publish with us

Policies and ethics