Skip to main content

Unexpected Linkage Between Unstirred Layers, Exclusion Zones, and Water

  • Chapter
Phase Transitions in Cell Biology

Abstract

We make the case that the unstirred layers of classical physiology arise from the influence of surfaces on the structure, and therefore the properties, of contiguous water. Traditionally, unstirred layers have been thought to arise merely out of stagnant volumes adjacent to membranes and other surfaces. These volumes would have to extend tens to hundreds of micrometers in order to account for the observed effects. On the other hand, charged and hydrophilic surfaces have been shown to impact water out to surprising distances, on the order of hundreds of micrometers. We present evidence that it is this water-structuring effect that is responsible for the unstirred layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Albrecht-Buehler G, Bushnell A (1982) Reversible compression of the cytoplasm. Exp Cell Res 140:173–189

    Article  PubMed  CAS  Google Scholar 

  • Antonenko YN, Pohl P, Rosenfeld E (1996) Visualization of the reaction layer in the immediate membrane vicinity. Arch Biochem Biophys 333:225–232

    Article  PubMed  CAS  Google Scholar 

  • Barry PH, Diamond JM (1984) Effects of unstirred layers on membrane phenomena. Physiol Rev 64:763–871

    PubMed  CAS  Google Scholar 

  • Chai, B-H, Zheng, J-M, Zhao, Q, Pollack, GH (2008) Spectroscopic studies of solutes in aqueous solution. J. Phys. Chem A 112:2242–2247

    Article  PubMed  CAS  Google Scholar 

  • Ciuhandu CS, Wright PA, Goldberg JI, Stevens ED (2007) Parameters influencing the dissolved oxygen in the boundary layer of rainbow trout (Oncorhynchus mykiss) embryos and larvae. J Exp Biol 210:1435–1445

    Article  PubMed  CAS  Google Scholar 

  • Clegg JS (1982) Alternative views on the role of water in cell function. In: Franks F, Mathias SF (ed.) Biophysics of Water. John Wiley and Sons, New York, pp. 365–385

    Google Scholar 

  • Clegg JS, Drost-Hansen W (1991) On the biochemistry and cell physiology of water. In: Hochachka PW, Mommsen TP (ed.), Biochemistry and Molecular Biology of Fishes, Elsevier, Amsterdam, pp. 1–23

    Google Scholar 

  • Cope F (1969) Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain. Biophys J 9:303–319

    Article  PubMed  CAS  Google Scholar 

  • Dainty J, House CR (1966) “Unstirred layers” in frog skin. J Physiol 182:66–78

    PubMed  CAS  Google Scholar 

  • Dick DAT (1959) Osmotic properties of living cells. Int Rev Cytol 8:387–448

    Article  PubMed  CAS  Google Scholar 

  • Drost-Hansen W (2006) Vicinal hydration of biopolymers: cell biological consequences. In: Pollack GH, Cameron IL, Wheatley DN (ed.). Water and the Cell. Springer-Verlag, Berlin, pp. 175–217

    Chapter  Google Scholar 

  • Drost-Hansen W, Clegg JS (ed.) (1979) Cell Associated Water. Ascademic Press, New York, p. 440

    Google Scholar 

  • Franks F, Mathias SF (ed.) (1982) Biophysics of Water. John Wiley and Sons, New York, p. 400

    Google Scholar 

  • Ginzberg BZ, Katchalsky A (1963) The frictional coefficients of the flows of non-electrolytes through artificial membranes. J Gen Physiol 47:403–418

    Article  Google Scholar 

  • Green K, Otori T (1970) Direct measurement of membrane unstirred layers. J Physiol 207:93–102

    PubMed  CAS  Google Scholar 

  • Gutknecht, J, Tosteson, DC (1973). Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers. Science 182:1258–1261

    Article  PubMed  CAS  Google Scholar 

  • Hardy, W (1932) Problems of the boundary state. Phil Trans Roy Soc Lon Ser A 230:1–37

    Article  Google Scholar 

  • Hazlewood CF (ed.) (1973) Physicochemical state of ions and water in living tissues and model systems. Ann NY Acad Sci 204:5–631

    Article  Google Scholar 

  • Hazlewood CF, Nichols BL, Chamberlain NF (1969) Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle. Nature 222:747–750

    Article  PubMed  CAS  Google Scholar 

  • Henniker, JC (1949) The depth of the surface zone of a liquid. Rev Mod Phys 21(2):322–341

    Article  CAS  Google Scholar 

  • House CR (1974) Water Transport in Cells. Arnold Press, London, p. 276

    Google Scholar 

  • Kamitsubo, E (1972) Motile protoplasmic fibrils in cells of the Characae. Protoplasma 74:53–70

    Article  Google Scholar 

  • Kepner GR, Stadelmann EJ (1985) Translation of Osmotische Untersuchungen. Studien zur Zellemechanik. Van Nostrand Reinhold, New York, p. 267

    Google Scholar 

  • Kim Y, Ye Q, Reinhardt H, Steudle E (2006) Further quantification of the role of internal stirred layers during the measurement of transport coefficients in giant internodes of Chara by a new stop-flow technique. J Exp Bot 57:4133–4144

    Article  PubMed  CAS  Google Scholar 

  • Kolata G (1976) Water structure and ion binding: a role in cell physiology? Science 192:1220–1222

    Article  PubMed  Google Scholar 

  • Leterrier JF (2001) Water and the cytoskeleton. Cell Mol Biol (Noisy-le-grand) 47:901–923

    CAS  Google Scholar 

  • Ling GN (2001) Life at the Cell and Below-Cell Level. Pacific Press, New York, p. 373

    Google Scholar 

  • Mentré P (ed.) (2001) Water in the cell. Cell Mol Biol 47:709–970

    PubMed  Google Scholar 

  • Mollenhauer HH, Morré DJ (1978) Structural compartmentation of the cytosol: zones of exclusion, zones of adhesion, cytoskeletal and intercisternal elements. In: Roodyn DB (ed.) Subcellular Biochemistry, vol. 5, Plenum Press, New York, pp. 327–362

    Google Scholar 

  • Pappenheimer JR (2001) Role of pre-epithelial “unstirred” layers in absorption of nutrients from the human jejunum. J Membrane Biol 179:185-204

    Article  CAS  Google Scholar 

  • Pashley RM, Kitchener JA (1979) Surface forces in adsorbed multilayers of water on quartz. J Coll Interface Sci 71: 491–500

    Article  CAS  Google Scholar 

  • Pohl P, Saparov SM, Antonenko YN (1998) The size of the unstirred layer as a function of the solute diffusion coefficient. Biophys J 75:1403–1409

    PubMed  CAS  Google Scholar 

  • Pollack GH (2001) Cells, Gels and the Engines of Life. Ebner and Sons, Seattle, p. 305

    Google Scholar 

  • Pollack GH, Cameron IL, Wheatley DN (ed.) (2006) Water and the Cell. Springer-Verlag, Berlin, pp. 165–174.

    Google Scholar 

  • Shepherd VA (2006) The cytomatrix as a cooperative system of macromolecular and water networks. Curr Top Dev Biol 75:171–233

    Article  PubMed  CAS  Google Scholar 

  • Spivak CE, Oz M, Beglan CL, Shrager RI (2006) Diffusion delays and unstirred layer effects at monolayer cultures of Chinese hamster ovary cells. Cell Biochem Biophys 45:43–58

    Article  PubMed  CAS  Google Scholar 

  • Stebbings H and Hunt C (1982) The nature of the clear zone around microtubules. Cell and Tissue Res 227:609–617

    CAS  Google Scholar 

  • Stebbings H, Willison JHM (1973) Structure of microtubules: a study of freeze-etched and negatively stained microtubules from the ovaries of Notonecta. Z. Zellforsch u Mikrosc Anat 138(3):387–396

    Article  CAS  Google Scholar 

  • Teorell T (1936) A method of studying conditions within diffusion layers. J Biol Chem 113:735–748

    CAS  Google Scholar 

  • Verkman AS, Dix JA (1984) Effect of unstirred layers on binding and reaction kinetocs at a membrane surface. Anal Biochem 142:109–116

    Article  PubMed  CAS  Google Scholar 

  • Wright SH, Becker SA, Stephens GC (1980) Influence of temperature and unstirred layers on the kinetics of glycine transport in isolated gills of Mytilus californianus. J Exp Zool 214:27–35

    Article  PubMed  CAS  Google Scholar 

  • Zheng, JM, Pollack, GH (2003) Long range forces extending from polymer surfaces. Phys Rev E.: 68:031408

    Article  CAS  Google Scholar 

  • Zheng, J-M, Chin, W-C, Khijniak, E, Khijniak, E, Jr, Pollack, GH (2006) Surfaces and Interfacial Water: Evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 127:19–27

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pollack, G.H., Clegg, J. (2008). Unexpected Linkage Between Unstirred Layers, Exclusion Zones, and Water. In: Pollack, G.H., Chin, WC. (eds) Phase Transitions in Cell Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8651-9_9

Download citation

Publish with us

Policies and ethics