Skip to main content

The LTR-Retrotransposons of Maize

  • Chapter
Handbook of Maize

The maize genome comprises 150,000–250,000 long terminal repeat (LTR)-retrotransposons, mostly in nested clusters, intermingled with other transpos-able elements and, more rarely, genes. All told, the genomic landscape of maize is 50–80% retrotransposons. Myriad families exist but >80% of maize retrotransposons belong to the five largest: Opie-Ji, Cinful-Zeon, Huck, Prem1 and Grande. Closely related to animal retroviruses, retrotransposons utilize an RNA intermediate to initiate their transposition. Despite extensive proliferation they are nevertheless suppressed by a variety of mechanisms, including DNA methylation, conversion to heterochromatin and various types of recombinational deletion. Retrotransposons play a large role in the size, structure, gene function and haplotype variation of the maize genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ananiev, E. V., R. L. Phillips and H. W. Rines (1998a) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95: 13073–13078.

    Article  CAS  Google Scholar 

  • Ananiev, E. V., R. L. Phillips and H. W. Rines (1998b) Complex structure of knob DNA on maize chromosome 9: Retrotransposon invasion into heterochromatin. Genetics 149: 2025–2037.

    CAS  Google Scholar 

  • Arumuganathan, K. and E. Earle (1991) Nuclear DNA content of some important plant species.Plant Molecular Biology Reporter 9: 208–218.

    Article  CAS  Google Scholar 

  • Asami, Y., D. W. Jia, K. Tatebayashi, K. Yamagata, M. Tanokura and H. Ikeda (2002) Effect of the DNA topoisomerase II inhibitor VP-16 on illegitimate recombination in yeast chromosomes. Gene 291: 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Avramova, Z., P. SanMiguel, E. Georgieva and J. L. Bennetzen (1995) Matrix Attachment Regions and Transcribed Sequences within a Long Chromosomal Continuum Containing Maize Adh1.Plant Cell 7: 1667–1680.

    Article  PubMed  CAS  Google Scholar 

  • Bender, J. (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55: 41–68.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J. L., K. Schrick, P. S. Springer, W. E. Brown and P. SanMiguel (1994) Active Maize Genes Are Unmodified and Flanked by Diverse Classes of Modified, Highly Repetitive DNA.Genome 37: 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, S., K. Fengler, M. Morgante, S. Tingey and A. Rafalski (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17: 343–360.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T. E., S. E. White and S. R. Wessler (1994) Transduction of a Cellular Gene by a Plant Retroelement. Cell 77: 479–480.

    Article  PubMed  CAS  Google Scholar 

  • Coulondre, C., J. H. Miller, P. J. Farabaugh and W. Gilbert (1978) Molecular-Basis of Base Substitution Hotspots in Escherichia-Coli. Nature 274: 775–780.

    Article  PubMed  CAS  Google Scholar 

  • Devos, K. M., J. K. M. Brown and J. L. Bennetzen (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12: 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  • Du, C. G., Z. Swigonova and J. Messing (2006) Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 6: 62.

    Article  PubMed  CAS  Google Scholar 

  • Eichinger, D. J. and J. D. Boeke (1990) A Specific Terminal Structure Is Required for Ty1 Transposition. Gene Dev 4: 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Elrouby, N. and T. E. Bureau (2001) A novel hybrid open reading frame formed by multiple cellular gene transductions by a plant long terminal repeat retroelement. J Biol Chem 276: 41963–41968.

    Article  PubMed  CAS  Google Scholar 

  • Emberton, J., J. X. Ma, Y. N. Yuan, P. SanMiguel and J. L. Bennetzen (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res 15:1441–1446.

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker, A., R. L. Gaut, H. Hilton, D. L. Feldman and B. S. Gaut (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA 95: 4441–4446.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y.-X., S. P. Moore, D. J. Garfinkel and A. Rein (2000) The Genomic RNA in Ty1 Virus-Like Particles Is Dimeric. J Virol 74: 10819–10821.

    Article  PubMed  CAS  Google Scholar 

  • Fu, H. H. and H. K. Dooner (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99: 9573–9578.

    PubMed  CAS  Google Scholar 

  • Fu, H. H., W. K. Park, X. H. Yan, Z. W. Zheng, B. Z. Shen and H. K. Dooner (2001) The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc Natl Acad Sci USA 98: 8903–8908.

    Article  PubMed  CAS  Google Scholar 

  • Fu, H. H., Z. W. Zheng and H. K. Dooner (2002) Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc Natl Acad Sci USA 99: 1082–1087.

    PubMed  CAS  Google Scholar 

  • Garcia-Martinez, J. and J. A. Martinez-Izquierdo (2003) Study on the evolution of the Grande retrotransposon in the Zea genus. Mol Biol Evol 20: 831–841.

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel, D. J. (2005) Genome evolution mediated by Ty elements in Saccharomyces. Cytogenet Genome Res 110: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Gaut, B. S., B. R. Morton, B. C. McCaig and M. T. Clegg (1996) Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93: 10274–10279.

    Article  PubMed  CAS  Google Scholar 

  • Haberer, G., S. Young, A. K. Bharti, H. Gundlach, C. Raymond, G. Fuks, E. Butler, R. A. Wing, S. Rounsley, B. Birren, C. Nusbaum, K. F. X. Mayer and J. Messing (2005) Structure and architecture of the maize genome. Plant Physiol 139: 1612–1624.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, A., O. Voinnet, L. Chappell and D. Baulcombe (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21: 4671–4679.

    Article  PubMed  CAS  Google Scholar 

  • Hu, W. M., O. P. Das and J. Messing (1995) Zeon-1, a Member of a New Maize Retrotransposon Family. Molecular & General Genetics 248: 471–480.

    Article  CAS  Google Scholar 

  • Huettel, B., T. Kanno, L. Daxinger, E. Bucher, J. van der Winden, A. J. M. Matzke and M. Matzke (2007) RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants. Biochimica Et Biophysica Acta-Gene Structure and Expression 1769: 358–374.

    Article  CAS  Google Scholar 

  • Ilic, K., P. J. SanMiguel and J. L. Bennetzen (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA 100: 12265–12270.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Y. K. and J. L. Bennetzen (1989) Structure and Coding Properties of Bs1, a Maize Retrovirus-Like Transposon. Proc Natl Acad Sci USA 86: 6235–6239.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Y. K. and J. L. Bennetzen (1994) Integration and Nonrandom Mutation of a Plasma-Membrane Proton Atpase Gene Fragment within the Bs1 Retroelement of Maize. Plant Cell 6: 1177–1186.

    Article  PubMed  CAS  Google Scholar 

  • Kashkush, K., M. Feldman and A. A. Levy (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33: 102–106.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A., C. Terzian, P. Santamaria, A. Pelisson, N. Prudhomme and A. Bucheton (1994) Retroviruses in Invertebrates - the Gypsy Retrotransposon Is Apparently an Infectious Retrovirus of Drosophila-Melanogaster. Proc Natl Acad Sci USA 91: 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A. and J. L. Bennetzen (1999) Plant retrotransposons. Annu Rev Genet 33: 479–532.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, J. C., J. M. Meyer, B. Corcoran, A. Kato, F. P. Han and J. A. Birchler (2007) Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Research 15: 33–49.

    Article  PubMed  CAS  Google Scholar 

  • Langham, R. J., J. Walsh, M. Dunn, C. Ko, S. A. Goff and M. Freeling (2004) Genomic duplication, fractionation and the origin of regulatory novelty. Genetics 166: 935–945.

    Article  PubMed  CAS  Google Scholar 

  • Laten, H. M., A. Majumdar and E. A. Gaucher (1998) SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc Natl Acad Sci USA 95: 6897–6902.

    Article  PubMed  CAS  Google Scholar 

  • Lim, J. K. and M. J. Simmons (1994) Gross Chromosome Rearrangements Mediated by Transposable Elements in Drosophila-Melanogaster. Bioessays 16: 269–275.

    Article  PubMed  CAS  Google Scholar 

  • Lippman, Z., A. V. Gendrel, M. Black, M. W. Vaughn, N. Dedhia, W. R. McCombie, K. Lavine, V. Mittal, B. May, K. D. Kasschau, J. C. Carrington, R. W. Doerge, V. Colot and R. Martienssen (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430: 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Liu, R., C. Vitte, J. Ma, A. A. Mahama, T. Dhliwayo, M. Lee and J. L. Bennetzen (2007) A GeneTrek analysis of the maize genome. Proc Natl Acad Sci USA 104: 11844–11849.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J. X. and J. L. Bennetzen (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101: 12404–12410.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J. X., K. M. Devos and J. L. Bennetzen (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14: 860–869.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J. X., P. SanMiguel, J. S. Lai, J. Messing and J. L. Bennetzen (2005) DNA rearrangement in orthologous Orp regions of the maize, rice and sorghum genomes. Genetics 170: 1209–1220.

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet, S. and S. R. Wessler (1997) Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell 9: 967–978.

    Article  PubMed  CAS  Google Scholar 

  • Martienssen, R. (1998) Transposons, DNA methylation and gene control. Trends Genet 14: 263–264.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, Y., Y. Vigouroux, M. M. Goodman, G. J. Sanchez, E. Buckler and J. Doebley (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99: 6080–6084.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M., T. Kanno, B. Huettel, L. Daxinger and A. J. M. Matzke (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10: 512–519.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., Y. T. A. Kato and A. Blumenshein (1981) In: Chromosome Constitution of Races of Maize. Colegio do Postgraduados, Chapingo, Mexico.

    Google Scholar 

  • Messing, J., A. K. Bharti, W. M. Karlowski, H. Gundlach, H. R. Kim, Y. Yu, F. S. Wei, G. Fuks, C. A. Soderlund, K. F. X. Mayer and R. A. Wing (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101: 14349–14354.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, B. C., S. V. Tingley and M. Morgante (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11: 1660–1676.

    Article  PubMed  CAS  Google Scholar 

  • Mieczkowski, P. A., F. J. Lemoine and T. D. Petes (2006) Recombination between retrotrans-posons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair 5: 1010–1020.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. T., F. G. Dong, S. A. Jackson, J. Song and J. M. Jiang (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150: 1615–1623.

    PubMed  CAS  Google Scholar 

  • Miller, W., J. McDonald and W. Pinsker (1997) Molecular domestication of mobile elements. Genetica 100: 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Monfort, A., C. M. Vicient, R. Raz, P. Puigdomenech and J. A. Martinez-Izquierdo (1995) Molecular Analysis of a Putative Transposable Retroelement from the Zea Genus with Internal Clusters of Tandem Repeats. DNA Res 2: 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Morgante, M., S. Brunner, G. Pea, K. Fengler, A. Zuccolo and A. Rafalski (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37: 997–1002.

    Article  PubMed  CAS  Google Scholar 

  • Mroczek, R. J. and R. K. Dawe (2003) Distribution of retroelements in centromeres and neocen-tromeres of maize. Genetics 165: 809–819.

    PubMed  CAS  Google Scholar 

  • Palmer, L. E., P. D. Rabinowicz, A. L. O'Shaughnessy, V. S. Balija, L. U. Nascimento, S. Dike, M. De la Bastide, R. A. Martienssen and W. R. McCombie (2003) Maize genome sequencing by methylation filtration. Science 302: 2115–2117.

    Article  PubMed  Google Scholar 

  • Palmgren, M. G. (1994) Capturing of Host DNA by a Plant Retroelement — Bs1 Encodes Plasma-Membrane H+ -Atpase Domains. Plant Mol Biol 25: 137–140.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, D. A., T. A. Sangster, J. S. Johnston, D. L. Hartl and K. L. Shaw (2000) Evidence for DNA loss as a determinant of genome size. Science 287: 1060–1062.

    Article  PubMed  CAS  Google Scholar 

  • Presting, G. G., L. Malysheva, J. Fuchs and I. Z. Schubert (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16: 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Quayle, T. J. A., J. W. S. Brown and G. Feix (1989) Analysis of Distal Flanking Regions of Maize 19-Kda Zein Genes. Gene 80: 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna, W., J. Emberton, M. Ogden, P. SanMiguel and J. L. Bennetzen (2002a) Structural analysis of the maize Rp1 complex reveals numerous sites and unexpected mechanisms of local rearrangement. Plant Cell 14: 3213–3223.

    Article  CAS  Google Scholar 

  • Ramakrishna, W., J. Emberton, P. SanMiguel, M. Ogden, V. Llaca, J. Messing and J. L. Bennetzen (2002b) Comparative sequence analysis of the sorghum Rph region and the maize Rp1 resistance gene complex. Plant Physiol 130: 1728–1738.

    Article  CAS  Google Scholar 

  • Rayburn, A. L., H. J. Price, J. D. Smith and J. R. Gold (1985) C-Band Heterochromatin and DNA Content in Zea mays. Am J Bot 72: 1610–1617.

    Article  Google Scholar 

  • Roeder, G. S. and G. R. Fink (1980) DNA Rearrangements Associated with a Transposable Element in Yeast. Cell 21: 239–249.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel, P. and J. L. Bennetzen (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82: 37–44.

    Article  CAS  Google Scholar 

  • SanMiguel, P., B. S. Gaut, A. Tikhonov, Y. Nakajima and J. L. Bennetzen (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20: 43–45.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel, P., A. Tikhonov, Y. K. Jin, N. Motchoulskaia, D. Zakharov, A. MelakeBerhan, P. S. Springer, K. J. Edwards, M. Lee, Z. Avramova and J. L. Bennetzen (1996) Nested retrotrans-posons in the intergenic regions of the maize genome. Science 274: 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Alferez, S., P. SanMiguel, Y. K. Jin, P. S. Springer and J. L. Bennetzen (2003) Structure and evolution of the Cinful retrotransposon family of maize. Genome 46: 745–752.

    Article  PubMed  CAS  Google Scholar 

  • Song, R. T., V. Llaca, E. Linton and J. Messing (2001) Sequence, regulation, and evolution of the maize 22-kD alpha zein in gene family. Genome Res 11: 1817–1825.

    PubMed  CAS  Google Scholar 

  • Song, R. T. and J. Messing (2003) Gene expression of a gene family in maize based on noncol-linear haplotypes. Proc Natl Acad Sci USA 100: 9055–9060.

    Article  PubMed  CAS  Google Scholar 

  • Song, S. U., T. Gerasimova, M. Kurkulos, J. D. Boeke and V. G. Corces (1994) An Env-Like Protein Encoded by a Drosophila Retroelement — Evidence That Gypsy Is an Infectious Retrovirus. Genes Dev 8: 2046–2057.

    Article  PubMed  CAS  Google Scholar 

  • Springer, P. S., K. J. Edwards and J. L. Bennetzen (1994) DNA Class Organization on Maize Adh1 Yeast Artificial Chromosomes. Proc Natl Acad Sci USA 91: 863–867.

    Article  PubMed  CAS  Google Scholar 

  • Swigonova, Z., J. L. Bennetzen and J. Messing (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169: 891–906.

    Article  PubMed  CAS  Google Scholar 

  • Swigonova, Z., J. S. Lai, J. X. Ma, W. Ramakrishna, M. Llaca, J. L. Bennetzen and J. Messing (2004) On the tetraploid origin of the maize genome. Comp Funct Genomics 5: 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov, A. P., P. J. SanMiguel, Y. Nakajima, N. M. Gorenstein, J. L. Bennetzen and Z. Avramova (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96: 7409–7414.

    Article  PubMed  CAS  Google Scholar 

  • Turcich, M. P., A. Bokhari-Riza, D. A. Hamilton, C. P. He, W. Messier, C. B. Stewart and J. P. Mascarenhas (1996) PREM-2, a copia-type retroelement in maize is expressed preferentially in early microspores. Sexual Plant Reproduction 9: 65–74.

    Article  Google Scholar 

  • Turcich, M. P. and J. P. Mascarenhas (1994) PREM-1, a Putative Maize Retroelement Has LTR (Long Terminal Repeat) Sequences That Are Preferentially Transcribed in Pollen. Sexual Plant Reproduction 7: 2–11.

    Google Scholar 

  • Vitte, C. and J. L. Bennetzen (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103: 17638–17643.

    Article  PubMed  CAS  Google Scholar 

  • Vitte, C. and O. Panaud (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20: 528–540.

    Article  PubMed  CAS  Google Scholar 

  • Vitte, C., O. Panaud and H. Quesneville (2007) LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics 8: 218.

    Article  PubMed  Google Scholar 

  • Wang, Q. H. and H. K. Dooner (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103: 17644–17649.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R. L., A. Stec, J. Hey, L. Lukens and J. Doebley (1999) The limits of selection during maize domestication. Nature 398: 236–239.

    Article  PubMed  CAS  Google Scholar 

  • Wessler, S. R., T. E. Bureau and S. E. White (1995) LTR-Retrotransposons and Mites — Important Players in the Evolution of Plant Genomes. Curr Opin Genet Dev 5: 814–821.

    Article  PubMed  CAS  Google Scholar 

  • White, S. E., L. F. Habera and S. R. Wessler (1994) Retrotransposons in the Flanking Regions of Normal Plant Genes — a Role for Copia-Like Elements in the Evolution of Gene Structure and Expression. Proc Natl Acad Sci USA 91: 11792–11796.

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw, C. A., W. B. Barbazuk, G. Pertea, A. P. Chan, F. Cheung, Y. Lee, L. Zheng, S. van Heeringen, S. Karamycheva, J. L. Bennetzen, P. SanMiguel, N. Lakey, J. Bedell, Y. Yuan, M. A. Budiman, A. Resnick, S. Van Aken, T. Utterback, S. Riedmuller, M. Williams, T. Feldblyum, K. Schubert, R. Beachy, C. M. Fraser and J. Quackenbush (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302: 2118–2120.

    Article  PubMed  Google Scholar 

  • Wicker, T., F. Sabot, A. Hua-Van, J. L. Bennetzen, P. Capy, B. Chalhoub, A. Flavell, P. Leroy, M. Morgante, O. Panaud, E. Paux, P. SanMiguel and A. H. Schulman (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8: 973–982.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., N. Yahiaoui, R. Guyot, E. Schlagenhauf, Z. D. Liu, J. Dubcovsky and B. Keller (2003)Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A(m) genomes of wheat. Plant Cell 15: 1186–1197.

    Article  PubMed  CAS  Google Scholar 

  • Wright, D. A. and D. F. Voytas (1998) Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins.Genetics 149: 703–715.

    PubMed  CAS  Google Scholar 

  • Wright, D. A. and D. F. Voytas (2002) Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res 12: 122–131.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y. and T. H. Eickbush (1990) Origin and Evolution of Retroelements Based Upon Their Reverse-Transcriptase Sequences. EMBO J 9: 3353–3362.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip SanMiguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

SanMiguel, P., Vitte, C. (2009). The LTR-Retrotransposons of Maize. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_15

Download citation

Publish with us

Policies and ethics