Skip to main content

Biomarkers for Early Detection of Parkinson’s Disease: An Essential Challenge

  • Conference paper
Advances in Alzheimer’s and Parkinson’s Disease

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 57))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gasser T. Genetics of Parkinson's disease. J Neu rol 2001;248:833–840.

    Article  CAS  Google Scholar 

  2. Huang Y, Cheung L, Rowe D, Halliday G. Genetic contributions to Parkinson's disease. Brain Res Brain Res Rev 2004;46:44–70.

    Article  PubMed  CAS  Google Scholar 

  3. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967;17:427–442.

    PubMed  CAS  Google Scholar 

  4. Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 1988;334:345–348.

    Article  PubMed  CAS  Google Scholar 

  5. Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 1996;47:S161–S170.

    PubMed  CAS  Google Scholar 

  6. Gerlach M, Riederer P, Youdim MB. tMolecular mechanisms for neurodegeneration: synergism between reactive oxygen species, calcium, and excitotoxic amino acids. Adv Neurol 1996;69:177–194.

    PubMed  CAS  Google Scholar 

  7. Jellinger KA. Recent developments in the pathology of Parkinson's disease. J Neural Transm Suppl 2002:347–376.

    Google Scholar 

  8. Koutsilieri E, Scheller C, Tribl F, Riederer P. Degeneration of neuronal cells due to oxidative stress–microglial contribution. Parkinsonism Relat Disord 2002;8:401–406.

    Article  PubMed  CAS  Google Scholar 

  9. Davis GC, Williams AC, Markey SP, et al. Chronic parkinsonism secondary to intravenous injection of meperidine analogs. Psychiatry Res 1979;1:249–254.

    Article  PubMed  CAS  Google Scholar 

  10. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219:979–980.

    Article  PubMed  CAS  Google Scholar 

  11. Collins MA, Neafsey EJ. Beta-carboline analogs of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP): endogenous factors underlying idiopathic parkinsonism? Neurosci Lett 1985;55:179–184.

    Article  PubMed  CAS  Google Scholar 

  12. Tanner CM. The role of environmental toxins in the etiology of Parkinson's disease. Trends Neurosci 1989;12:49–54.

    Article  PubMed  CAS  Google Scholar 

  13. Bringmann G, God R, Feineis D, et al. The TaClo concept: 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo), a new toxin for dopaminergic neurons. J Neural Transm Suppl 1995;46:235–244.

    PubMed  CAS  Google Scholar 

  14. Bringmann G, Feineis D, Bruckner R, et al. Bromal-derived tetrahydro-beta-carbolines as neurotoxic agents: chemistry, impairment of the dopamine metabolism, and inhibitory effects on mitochondrial respiration. Bioorg Med Chem 2000;8:1467–1478.

    Article  PubMed  CAS  Google Scholar 

  15. Bringmann G, Feineis D, God R, et al. 1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) and related derivatives: chemistry and biochemical effects on catecholamine biosynthesis. Bioorg Med Chem 2002;10:2207–2214.

    Article  PubMed  CAS  Google Scholar 

  16. Drozdzik M, Bialecka M, Mysliwiec K, et al. Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson's disease. Pharmacogenetics 2003;13:259–263.

    Article  PubMed  CAS  Google Scholar 

  17. Salazar M, Sokoloski TD, Patil PN. Binding of dopaminergic drugs by the neuromelanin of the substantia nigra, synthetic melanins and melanin granules. Fed Proc 1978;37: 2403–2407.

    PubMed  CAS  Google Scholar 

  18. D'Amato RJ, Lipman ZP, Snyder SH. Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science 1986;231:987–989.

    Article  PubMed  Google Scholar 

  19. Lindquist NG, Larsson BS, Lyden-Sokolowski A. Autoradiography of [14C]paraquat or [14C]diquat in frogs and mice: accumulation in neuromelanin. Neurosci Lett 1988;93:1–6.

    Article  PubMed  CAS  Google Scholar 

  20. Lyden-Sokolowski A, Larsson BS, Lindquist NG. Disposition of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice before and after monoamine oxidase and catecholamine reuptake inhibition. Pharmacol Toxicol 1988;63:75–80.

    PubMed  CAS  Google Scholar 

  21. Hayase Y, Tobita K. Influenza virus and neurological diseases. Psychiatry Clin Neurosci 1997;51:181–184.

    Article  PubMed  CAS  Google Scholar 

  22. Dale RC, Church AJ, Surtees RA, et al. Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 2004;127:21–33.

    Article  PubMed  Google Scholar 

  23. Mattock C, Marmot M, Stern G. Could Parkinson's disease follow intra-uterine influenza? A speculative hypothesis. J Neurol Neurosurg Psychiatry 1988;51:753–756.

    PubMed  CAS  Google Scholar 

  24. Koutsilieri E, Sopper S, Scheller C, et al. Parkinsonism in HIV dementia. J Neural Transm 2002;109:767–775.

    Article  PubMed  CAS  Google Scholar 

  25. Ling Z, Gayle DA, Ma SY, et al. In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov Disord 2002;17:116–124.

    Article  PubMed  Google Scholar 

  26. Riederer P. Is there a subtype of developmental Parkinson's disease? Neurotox Res 2003;5:27–34.

    Article  PubMed  CAS  Google Scholar 

  27. Birkmayer W, Riederer P, Youdim BH. Distinction between benign and malignant type of Parkinson's disease. Clin Neurol Neurosurg 1979;81:158–164.

    Article  PubMed  CAS  Google Scholar 

  28. Graham JM, Sagar HJ. A data-driven approach to the study of heterogeneity in idiopathic Parkinson's disease: identification of three distinct subtypes. Mov Disord 1999;14:10–20.

    Article  PubMed  CAS  Google Scholar 

  29. Riederer P, Foley P. Mini-review: multiple developmental forms of parkinsonism: the basis for further research as to the pathogenesis of parkinsonism. J Neural Transm 2002;109:1469–1475.

    Article  PubMed  CAS  Google Scholar 

  30. Koller WC. How accurately can Parkinson's disease be diagnosed? Neurology 1992;42:6–16; discussion 57–60.

    PubMed  CAS  Google Scholar 

  31. Fahn S. Description of Parkinson's disease as a clinical syndrome. Ann N Y Acad Sci 2003;991:1–14.

    Article  PubMed  CAS  Google Scholar 

  32. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002;125:861–870.

    Article  PubMed  Google Scholar 

  33. Jellinger KA. How valid is the clinical diagnosis of Parkinson's disease in the community? J Neurol Neurosurg Psychiatry 2003;74:1005–1006.

    Article  PubMed  CAS  Google Scholar 

  34. Bernheimer H, Birkmayer W, Hornykiewicz O, et al. Brain dopamine and the syndromes of Parkinson. Arch Neurol 1973;59:999–1005.

    Google Scholar 

  35. Riederer P, Wuketich S. Time course of nigrostriatal degeneration in parkinson's disease: a detailed study of influential actors in human brain amine analysis. J Neural Transm 1976;38:277–301.

    Article  PubMed  CAS  Google Scholar 

  36. McGeer PL, Itagaki S, Akiyama H, McGeer EG. Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 1988;24:574–576.

    Article  PubMed  CAS  Google Scholar 

  37. Fearnley JM, Lees AJ. Aging and Parkinson's disease: substantia nigra regional selectivity. Brain 1991;114(Pt 5):2283–2301.

    Article  PubMed  Google Scholar 

  38. Marek K, Innis R, van Dyck C, et al. [123I]β-CIT SPECT imaging assessment of the rate of Parkinson's disease progression. Neurology 2001;57:2089–2094.

    PubMed  CAS  Google Scholar 

  39. Jenner P. Presymptomatic detection of Parkinson's disease. J Neural Transm Suppl 1993;40:23–36.

    PubMed  CAS  Google Scholar 

  40. Gerlach M, Riederer P, Youdim MB. Neuroprotective therapeutic strategies: comparison of experimental and clinical results. Biochem Pharmacol 1995;50:1–16.

    Article  PubMed  CAS  Google Scholar 

  41. Riederer P, Sian J, Gerlach M. Is there neuroprotection in Parkinson syndrome? J Neurol 2000;247(Suppl 4):8–11.

    Google Scholar 

  42. Mandel S, Grünblatt E, Riederer P, et al. Neuroprotective strategies in Parkinson's disease: an update on progress. CNS Drugs 2003;17:729–762.

    Article  PubMed  CAS  Google Scholar 

  43. Riederer P, Gille G, Muller T, et al. Practical importance of neuroprotection in Parkinson's disease. J Neurol 2002;249(Suppl 3):53–56.

    Google Scholar 

  44. Stocchi F, Olanow CW. Neuroprotection in Parkinson's disease: clinical trials. Ann Neurol 2003;53(Suppl 3):S87-S97; discussion S97-S89.

    Article  PubMed  CAS  Google Scholar 

  45. Javoy-Agid F, Ruberg M, Pique L, et al. Biochemistry of the hypothalamus in Parkinson's disease. Neurology 1984;34:672–675.

    PubMed  CAS  Google Scholar 

  46. Javoy-Agid F, Ruberg M, Taquet H, et al. Biochemical neuropathology of Parkinson's disease. Adv Neurol 1984;40:189–198.

    PubMed  CAS  Google Scholar 

  47. Jellinger KA. Pathology of Parkinson's disease: changes other than the nigrostriatal pathway. Mol Chem Neuropathol 1991;14:153–197.

    Article  PubMed  CAS  Google Scholar 

  48. Przuntek H, Muller T, Riederer P. Diagnostic staging of Parkinson's disease: conceptual aspects. J Neural Transm 2004;111:201–216.

    Article  PubMed  CAS  Google Scholar 

  49. Gurevich T, Korczyn AD. Autonomic disturbances in Parkinson's disease. In: Gálvez-Jiménez N (ed) Scientific Basis of the Treatment of Parkinson's Disease. Taylor & Francis, London, 2005, pp 333–347.

    Google Scholar 

  50. Hadjiconstantinou M, Neff NH. Catecholamine systems of retina: a model for studying synaptic mechanisms. Life Sci 1984;5:1135–1147.

    Article  Google Scholar 

  51. Harnois C, Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson's disease. Invest Ophthalmol Vis Sci 1990;31:2473–2475.

    PubMed  CAS  Google Scholar 

  52. Bodis-Wollner I, Tagliati M. The visual system in Parkinson's disease. Adv Neurol 1993;60:390–394.

    PubMed  CAS  Google Scholar 

  53. Djamgoz MB, Hankins MW, Hirano J, Archer SN. Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 1997;37:3509–3529.

    Article  PubMed  CAS  Google Scholar 

  54. Oestreicher E, Sengstock GJ, Riederer P, et al. Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 1994;660:8–18.

    Article  PubMed  CAS  Google Scholar 

  55. Kortekaas R, Leenders KL, van Oostrom JC, et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 2005;57:176–179.

    Article  PubMed  CAS  Google Scholar 

  56. Drozdzik M, Bialecka M, Mysliwiec K, et al. Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson's disease. Pharmacogenetics 2003;13:259–263.

    Article  PubMed  CAS  Google Scholar 

  57. Riederer P, Rausch WD, Birkmayer W, et al. CNS modulation of adrenal tyrosine hydroxylase in Parkinson's disease and metabolic encephalopathies. J Neural Transm Suppl 1978;(14):121–131.

    Google Scholar 

  58. Stoddard SL, Ahlskog JE, Kelly PJ, et al. Decreased adrenal medullary catecholamines in adrenal transplanted parkinsonian patients compared to nephrectomy patients. Exp Neurol 1989;104:218–222.

    Article  PubMed  CAS  Google Scholar 

  59. Mossner R, Henneberg A, Schmitt A, et al. Allelic variation of serotonin transporter expression is associated with depression in Parkinson's disease. Mol Psychiatry 2001;6:350–352.

    Article  PubMed  CAS  Google Scholar 

  60. Del Tredici K, Rub U, De Vos RA, et al. Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 2002;61:413–426.

    PubMed  Google Scholar 

  61. Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003;24:197–211.

    Article  PubMed  Google Scholar 

  62. Jellinger KA. Alpha-synuclein pathology in Parkinson's and Alzheimer's disease brain: incidence and topographic distribution—a pilot study. Acta Neuropathol (Berl) 2003;106:191–201.

    Article  Google Scholar 

  63. Jellinger KA. The pathology of Parkinson's disease: recent advances. In: Gálvez-Jiménez N (ed) Scientific Basis for the Treatment of Parkinson's Disease. Taylor & Francis, London, 2005, pp 53–114.

    Google Scholar 

  64. Przuntek H, Muller T, Riederer P. Diagnostic staging of Parkinson's disease: conceptual aspects. J Neural Transm 2004;111:201–216.

    Article  PubMed  CAS  Google Scholar 

  65. Pfeiffer RF, Bodis-Wollner I. Parkinson's Disease and Nonmotor Dysfunction. Humana-Springer, Totowa, NJ, 2005.

    Google Scholar 

  66. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95.

    Google Scholar 

  67. Michell AW, Lewis SJ, Foltynie T, Barker RA. Biomarkers and Parkinson's disease. Brain 2004;127:1693–1705.

    Article  PubMed  CAS  Google Scholar 

  68. Leenders KL. Neuroimaging methods applied in Parkinson's disease. J Neurol 2004;251(Suppl 6):7–12.

    Google Scholar 

  69. Brooks DJ, Frey KA, Marek KL, et al. Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson's disease. Exp Neurol 2003; 184(Suppl 1):S68–S79.

    Article  PubMed  CAS  Google Scholar 

  70. Kung HF, Lee CW, Zhuang ZP, et al. Novel stilbenes as probes for amyloid plaques. J Am Chem Soc 2001;123:12740–12741.

    Article  PubMed  CAS  Google Scholar 

  71. Zhuang ZP, Kung MP, Hou C, et al. Radioiodinated styrylbenzenes and thioflavins as probes for amyloid aggregates. J Med Chem 2001;44:1905–1914.

    Article  PubMed  CAS  Google Scholar 

  72. Parkinson Study Group. A multicenter assessment of dopamine transporter imaging with DOPASCAN/SPECT in parkinsonism: Parkinson Study Group. Neurology 2000;55:1540–1547.

    Google Scholar 

  73. Antonini A, DeNotaris R. PET and SPECT functional imaging in Parkinson's disease. Sleep Med 2004;5:201–206.

    Article  PubMed  Google Scholar 

  74. Becker G, Seufert J, Bogdahn U, et al. Degeneration of substantia nigra in chronic Parkinson's disease visualized by transcranial color-coded real-time sonography. Neurology 1995;45:182–184.

    PubMed  CAS  Google Scholar 

  75. Becker G, Berg D. Neuroimaging in basal ganglia disorders: perspectives for transcranial ultrasound. Mov Disord 2001;16:23–32.

    Article  PubMed  CAS  Google Scholar 

  76. Berg D, Roggendorf W, Schroder U, et al. Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury and Huntington: clinical, morphological and neurochemical correlations. J Neurol Sci 2002;20:415–455.

    Google Scholar 

  77. Ben-Shachar D, Riederer P, Youdim MB. Iron-melanin interaction and lipid peroxidation: implications for Parkinson's disease. J Neurochem 1991;57:1609–1614.

    Article  PubMed  CAS  Google Scholar 

  78. Jellinger K, Kienzl E, Rumpelmair G, et al. Iron-melanin complex in substantia nigra of parkinsonian brains: an x-ray microanalysis. J Neurochem 1992;59:1168–1171.

    Article  PubMed  CAS  Google Scholar 

  79. Berg D, Siefker C, Ruprecht-Dorfler P, Becker G. Relationship of substantia nigra echogenicity and motor function in elderly subjects. Neurology 2001;56:13–17.

    Article  PubMed  CAS  Google Scholar 

  80. Doty RL, Perl DP, Steele JC, et al. Olfactory dysfunction in three neurodegenerative diseases. Geriatrics 1991;46(Suppl 1):47–51.

    PubMed  Google Scholar 

  81. Adler CH, Gwinn KA, Newman S. Olfactory function in restless legs syndrome. Mov Disord 1998;13:563–565.

    Article  PubMed  CAS  Google Scholar 

  82. Westervelt HJ, Stern RA, Tremont G. Odor identification deficits in diffuse Lewy body disease. Cogn Behav Neurol 2003;16:93–99.

    Article  PubMed  Google Scholar 

  83. Double KL, Rowe DB, Hayes M, et al. Identifying the pattern of olfactory deficits in Parkinson disease using the brief smell identification test. Arch Neurol 2003;60:545–549.

    Article  PubMed  Google Scholar 

  84. Bodis-Wollner I, Onofrj M. The visual system in Parkinson's disease. Adv Neurol 1987;45:323–327.

    PubMed  CAS  Google Scholar 

  85. Price MJ, Feldman RG, Adelberg D, Kayne H. Abnormalities in color vision and contrast sensitivity in Parkinson's disease. Neurology 1992;42:887–890.

    PubMed  CAS  Google Scholar 

  86. Sartucci F, Orlandi G, Lucetti C, et al. Changes in pattern electroretinograms to equiluminant red-green and blue-yellow gratings in patients with early Parkinson's disease. J Clin Neurophysiol 2003;20:375–381.

    Article  PubMed  Google Scholar 

  87. Ilic TV, Jovanovic M, Jovicic A, Tomovic M. Oxidative stress indicators are elevated in de novo Parkinson's disease patients. Funct Neurol 1999;14:141–147.

    PubMed  CAS  Google Scholar 

  88. Bogdanov MB, Beal MF, McCabe DR, et al. A carbon column-based liquid chromatography electrochemical approach to routine 8-hydroxy-2′-deoxyguanosine measurements in urine and other biologic matrices: a one-year evaluation of methods. Free Radic Biol Med 1999;27:647–666.

    Article  PubMed  CAS  Google Scholar 

  89. Kikuchi A, Takeda A, Onodera H, et al. Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy. Neurobiol Dis 2002;9: 244–248.

    Article  PubMed  CAS  Google Scholar 

  90. Abe T, Isobe C, Murata T, et al. Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson's disease. Neurosci Lett 2003;336:105–108.

    Article  PubMed  CAS  Google Scholar 

  91. Stahl SM. The human platelet: a diagnostic and research tool for the study of biogenic amines in psychiatric and neurologic disorders. Arch Gen Psychiatry 1977;34:509–516.

    PubMed  CAS  Google Scholar 

  92. Barbeau A, Campanella G, Butterworth RF, Yamada K. Uptake and efflux of 14C-dopamine in platelets: evidence for a generalized defect in Parkinson's disease. Neurology 1975;25:1–9.

    PubMed  CAS  Google Scholar 

  93. Elsworth JD, Glover V, Reynolds GP, et al. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the ‘cheese effect.’ Psychopharmacology (Berl) 1978;57:33–38.

    Article  CAS  Google Scholar 

  94. Götz ME, Gerstner A, Harth R, et al. Altered redox state of platelet coenzyme Q10 in Parkinson's disease. J Neural Transm 2000;107:41–48.

    Article  PubMed  Google Scholar 

  95. Suzuki K, Mizuno Y, Yoshida M. Selective inhibition of complex I of the brain electron transport system by tetrahydroisoquinoline. Biochem Biophys Res Commun 1989;162:1541–1545.

    Article  PubMed  CAS  Google Scholar 

  96. Reichmann H, Riederer P. Biochemical analyses of respiratory chain enzymes in different brain regions of patients with Parkinson's disease. Presented at the BMBF Symposium "Morbus Parkinson und andere Basalganglienerkrankungen," Bad Kissingen, abstract 1989, p 44.

    Google Scholar 

  97. Mizuno Y, Ohta S, Tanaka M, et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun 1989;163:1450–1455.

    Article  PubMed  CAS  Google Scholar 

  98. Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1989;1:1269.

    Article  PubMed  CAS  Google Scholar 

  99. Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 1990;54:823–827.

    Article  PubMed  CAS  Google Scholar 

  100. Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol 1989;26:719–723.

    Article  PubMed  Google Scholar 

  101. Yoshino H, Nakagawa-Hattori Y, Kondo T, Mizuno Y. Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson's disease. J Neural Transm Park Dis Dement Sect 1992;4:27–34.

    Article  PubMed  CAS  Google Scholar 

  102. Jenner P. Presymptomatic detection of Parkinson's disease. J Neural Transm Suppl 1993;40:23–36.

    PubMed  CAS  Google Scholar 

  103. Blandini F, Nappi G, Greenamyre JT. Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Mov Disord 1998;13:11–15.

    Article  PubMed  CAS  Google Scholar 

  104. Nakagawa-Hattori Y, Yoshino H, Kondo T, et al. Is Parkinson's disease a mitochondrial disorder? J Neurol Sci 1992;107:29-33.

    Article  PubMed  CAS  Google Scholar 

  105. Lestienne P, Nelson J, Riederer P, et al. Normal mitochondrial genome in brain from patients with Parkinson's disease and complex I defect. J Neurochem 1990;55:1810–1812.

    Article  PubMed  CAS  Google Scholar 

  106. Lestienne P, Nelson I, Riederer P, et al. Mitochondrial DNA in postmortem brain from patients with Parkinson's disease. J Neurochem 1991;56:1819.

    Article  PubMed  CAS  Google Scholar 

  107. Simon DK, Mayeux R, Marder K, et al. Mitochondrial DNA mutations in complex I and tRNA genes in Parkinson's disease. Neurology 2000;54:703–709.

    PubMed  CAS  Google Scholar 

  108. Richter G, Sonnenschein A, Grunewald T, et al. Novel mitochondrial DNA mutations in Parkinson's disease. J Neural Transm 2002;109:721–729.

    Article  PubMed  CAS  Google Scholar 

  109. Swerdlow RH, Parks JK, Miller SW, et al. Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol 1996;40:663–671.

    Article  PubMed  CAS  Google Scholar 

  110. Gu M, Cooper JM, Taanman JW, Schapira AH. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease. Ann Neurol 1998;44:177–186.

    Article  PubMed  CAS  Google Scholar 

  111. Lin MT, Simon DK, Ahn CH, et al. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain. Hum Mol Genet 2002;11:133–145.

    Article  PubMed  CAS  Google Scholar 

  112. Fedorow H, Tribl F, Halliday G, et al. Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson's disease. Prog Neurobiol 2005;75:109–124.

    Article  PubMed  CAS  Google Scholar 

  113. Tribl F, Gerlach M, Marcus K, et al. "Subcellular proteomics" of neuromelanin granules isolated from the human brain. Mol Cell Proteomics 2005;4:945–957.

    Article  PubMed  CAS  Google Scholar 

  114. Marsden CD. Neuromelanin and Parkinson's disease. J Neural Transm Suppl 1983;19:121–141.

    PubMed  CAS  Google Scholar 

  115. Youdim MB, Ben-Shachar D, Riederer P. The enigma of neuromelanin in Parkinson’s disease substantia nigra. J Neural Transm Suppl 1994;43:113–122.

    PubMed  CAS  Google Scholar 

  116. Double, Ben-Shachar D, Youdim M, et al. Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotoxicol Teratol 2002;24:621.

    Article  PubMed  CAS  Google Scholar 

  117. Wilms H, Rosenstiel P, Sievers J, et al. Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson's disease. FASEB J 2003;17:500–502.

    PubMed  CAS  Google Scholar 

  118. Shamoto-Nagai M, Maruyama W, Akao Y, et al. Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cells. J Neural Transm 2004;111:1253–1265

    Article  PubMed  CAS  Google Scholar 

  119. Double K, Rowe DB, Halliday GM, et al. A biochemical test to diagnose Parkinson’s disease. J Neural Transm Suppl 2002;109(III).

    Google Scholar 

  120. Gerlach M, Reichmann H, Riederer P. Die Parkinson-Krankheit. Springer-Verlag, Wien, 2003.

    Google Scholar 

  121. Grünblatt E, Mandel S, Jacob-Hirsch J, et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 2004;111:1543–1573.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Tribl, F., Riederer, P. (2008). Biomarkers for Early Detection of Parkinson’s Disease: An Essential Challenge. In: Fisher, A., Memo, M., Stocchi, F., Hanin, I. (eds) Advances in Alzheimer’s and Parkinson’s Disease. Advances in Behavioral Biology, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72076-0_6

Download citation

Publish with us

Policies and ethics