Skip to main content

Role of Oxidative Insult and Neuronal Survival in Alzheimer’s and Parkinson’s Diseases

  • Conference paper
Advances in Alzheimer’s and Parkinson’s Disease

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 57))

  • 2012 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith MA, Rottkamp CA, Nunomura A, et al. Oxidative stress in Alzheimer's disease. Biochim Biophys Acta 2000;1502(1):139–144

    PubMed  CAS  Google Scholar 

  2. Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol 2003;53(suppl 3):S26–S36; discussion S36–S28

    Article  PubMed  CAS  Google Scholar 

  3. Gomez-Isla T, Hollister R, West H, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol 1997;41(1):17–24

    Article  PubMed  CAS  Google Scholar 

  4. Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 1991;114 (Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  5. Hamburger V. Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol 1975;160(4):535–546

    Article  PubMed  CAS  Google Scholar 

  6. Perry G, Nunomura A, Smith MA. A suicide note from Alzheimer disease neurons? Nat Med 1998;4(8):897–898

    Article  PubMed  CAS  Google Scholar 

  7. Jellinger KA, Stadelmann C. Problems of cell death in neurodegeneration and Alzheimer's disease. J Alzheimers Dis 2001;3(1):31–40

    PubMed  CAS  Google Scholar 

  8. Gastard MC, Troncoso JC, Koliatsos VE. Caspase activation in the limbic cortex of subjects with early Alzheimer's disease. Ann Neurol 2003;54(3):393–398

    Article  PubMed  CAS  Google Scholar 

  9. Hartmann A, Hunot S, Michel PP, et al. Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci U S A 2000;97(6):2875–2880

    Article  PubMed  CAS  Google Scholar 

  10. Raina AK, Hochman A, Zhu X, et al. Abortive apoptosis in Alzheimer's disease. Acta Neuropathol (Berl) 2001;101(4):305–310

    CAS  Google Scholar 

  11. Graeber MB, Grasbon-Frodl E, Abell-Aleff P, Kosel S. Nigral neurons are likely to die of a mechanism other than classical apoptosis in Parkinson's disease. Parkinsonism Relat Disord 1999;5(4):187–192

    Article  PubMed  CAS  Google Scholar 

  12. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 2000;97(26):14376–14381

    Article  PubMed  CAS  Google Scholar 

  13. Hy LX, Keller DM. Prevalence of AD among whites: a summary by levels of severity. Neurology 2000;55(2):198–204

    PubMed  CAS  Google Scholar 

  14. Fahn S, Sulzer D. Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx 2004;1(1):139–154

    Article  PubMed  Google Scholar 

  15. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993;262(5134):689–695

    Article  PubMed  CAS  Google Scholar 

  16. Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 2002;82(3):637–672

    PubMed  CAS  Google Scholar 

  17. Guo Q, Sopher BL, Furukawa K, et al. Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 1997;17(11):4212–4222

    PubMed  CAS  Google Scholar 

  18. Eckert A, Steiner B, Marques C, et al. Elevated vulnerability to oxidative stress-induced cell death and activation of caspase-3 by the Swedish amyloid precursor protein mutation. J Neurosci Res 2001;64(2):183–192

    Article  PubMed  CAS  Google Scholar 

  19. Hashimoto M, Hsu LJ, Rockenstein E, et al. Alpha-synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J Biol Chem 2002;277(13):11465–11472

    Article  PubMed  CAS  Google Scholar 

  20. Marques CA, Keil U, Bonert A, et al. Neurotoxic mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway. J Biol Chem 2003;278(30):28294–28302

    Article  PubMed  CAS  Google Scholar 

  21. Smith MA, Hirai K, Hsiao K, et al. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998;70(5):2212–2215

    Article  PubMed  CAS  Google Scholar 

  22. Guo Q, Sebastian L, Sopher BL, et al. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation. J Neurochem 1999;72(3):1019–1029

    Article  PubMed  CAS  Google Scholar 

  23. Leutner S, Czech C, Schindowski K, et al. Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations. Neurosci Lett 2000;292(2):87–90

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi M, Dore S, Ferris CD, et al. Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer's disease. Neuron 2000;28(2):461–473

    Article  PubMed  CAS  Google Scholar 

  25. Matsuoka Y, Picciano M, La Francois J, Duff K. Fibrillar beta-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer's disease, Neuroscience 2001;104(3):609–613

    Article  PubMed  CAS  Google Scholar 

  26. Pratico D, Uryu K, Leight S, et al. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001;21(12):4183–4187

    PubMed  CAS  Google Scholar 

  27. LaFontaine MA, Mattson MP, Butterfield DA. Oxidative stress in synaptosomal proteins from mutant presenilin-1 knock-in mice: implications for familial Alzheimer's disease. Neurochem Res 2002;27(5):417–421

    Article  PubMed  CAS  Google Scholar 

  28. Cecchi C, Fiorillo C, Sorbi S, et al. Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer's patients. Free Radic Biol Med 2002;33(10):1372–1379

    Article  PubMed  CAS  Google Scholar 

  29. Bogdanovic N, Zilmer M, Zilmer K, et al. The Swedish APP670/671 Alzheimer's disease mutation: the first evidence for strikingly increased oxidative injury in the temporal inferior cortex. Dement Geriatr Cogn Disord 2001;12(6):364–370

    Article  PubMed  CAS  Google Scholar 

  30. Nunomura A, Chiba S, Lippa CF, et al. Neuronal RNA oxidation is a prominent feature of familial Alzheimer's disease. Neurobiol Dis 2004;17(1):108–113

    Article  PubMed  CAS  Google Scholar 

  31. Hyun DH, Lee M, Hattori N, et al. Effect of wild-type or mutant parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. J Biol Chem 2002;277(32):28572–28577

    Article  PubMed  CAS  Google Scholar 

  32. Miyata M, Smith JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 1996;14(1):55–61

    Article  PubMed  CAS  Google Scholar 

  33. Montine KS, Reich E, Neely MD, et al. Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. J Neuropathol Exp Neurol 1998;57(5):415–425

    Article  PubMed  CAS  Google Scholar 

  34. Ramassamy C, Averill D, Beffert, U et al. Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer's disease is related to the apolipoprotein E genotype. Free Radic Biol Med 1999;27(5-6):544–553

    Article  PubMed  CAS  Google Scholar 

  35. Tamaoka A, Miyatake F, Matsuno S, et al. Apolipoprotein E allele-dependent antioxidant activity in brains with Alzheimer's disease. Neurology 2000;54(12):2319–2321

    PubMed  CAS  Google Scholar 

  36. Mattson MP. Gene-diet interactions in brain aging and neurodegenerative disorders. Ann Intern Med 2003;139(5 Pt 2):441–444

    PubMed  CAS  Google Scholar 

  37. Mayeux R. Epidemiology of neurodegeneration. Annu Rev Neurosci 2003;26:81–104

    Article  PubMed  CAS  Google Scholar 

  38. Haan MN, Wallace R. Can dementia be prevented? Brain aging in a population-based context. Annu Rev Public Health 25:1–24

    Google Scholar 

  39. Logroscino G, Marder K, Cote L, et al. Dietary lipids and antioxidants in Parkinson's disease: a population-based case-control study. Ann Neurol 39(1):89–94

    Google Scholar 

  40. Lai BC, Marion SA, Teschke K, Tsui JK. Occupational and environmental risk factors for Parkinson's disease. Parkinsonism Relat Disord 8(5):297–309

    Google Scholar 

  41. Gorell JM, Peterson EL, Rybicki BA, Johnson CC. Multiple risk factors for Parkinson's disease. J Neurol Sci 217(2):169–174

    Google Scholar 

  42. Preston AM. Cigarette smoking―nutritional implications. Prog Food Nutr Sci 15(4):183–217

    Google Scholar 

  43. Moriel P, Plavnik FL, Zanella MT, et al. Lipid peroxidation and antioxidants in hyperlipidemia and hypertension. Biol Res 33(2):105–112

    Google Scholar 

  44. Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38

    Google Scholar 

  45. Perna AF, Ingrosso D, De Santo NG. Homocysteine and oxidative stress. Amino Acids 25(3-4):409–417

    Google Scholar 

  46. Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24(2):133–150

    Google Scholar 

  47. Gupta VB, Anitha S, Hegde ML, et al. Aluminium in Alzheimer's disease: are we still at a crossroad? Cell Mol Life Sci 62(2):143–158

    Google Scholar 

  48. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Google Scholar 

  49. Abdollahi M, Ranjbar A, Shadnia S, et al. Pesticides and oxidative stress: a review. Med Sci Monit 2004;10(6):RA141–RA147

    PubMed  CAS  Google Scholar 

  50. Hamburger SA, McCay PB. Spin trapping of ibuprofen radicals: evidence that ibuprofen is a hydroxyl radical scavenger. Free Radic Res Commun 1990;9(3-6):337–342

    PubMed  CAS  Google Scholar 

  51. Behl C, Skutella T, Lezoualc'h F, et al. Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol Pharmacol 1997;51(4):535–541

    PubMed  CAS  Google Scholar 

  52. Commenges D, Scotet V, Renaud S, et al. Intake of flavonoids and risk of dementia. Eur J Epidemiol 2000;16(4):357–363

    Article  PubMed  CAS  Google Scholar 

  53. Green P, Glozman S, Weiner L, Yavin E. Enhanced free radical scavenging and decreased lipid peroxidation in the rat fetal brain after treatment with ethyl docosahexaenoate. Biochim Biophys Acta 2001;1532(3):203–212

    PubMed  CAS  Google Scholar 

  54. Stoll LL, McCormick ML, Denning GM, Weintraub NL. Antioxidant effects of statins. Drugs Today (Barc) 2004;40(12):975–990

    Article  CAS  Google Scholar 

  55. De Rijk MC, M. Breteler MM, den Breeijen JH, et al. Dietary antioxidants and Parkinson disease: the Rotterdam Study. Arch Neurol 1997;54(6):762–765

    PubMed  Google Scholar 

  56. Chen H, Zhang SM, Hernan MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 2003;60(8):1059–1064

    Article  PubMed  Google Scholar 

  57. Etminan M, Gill SS, Samii A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson's disease: a meta-analysis. Lancet Neurol 2005;4(6):362–365

    Article  PubMed  CAS  Google Scholar 

  58. Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001;60(8):759–767

    PubMed  CAS  Google Scholar 

  59. Nunomura A, Perry G, Pappolla MA, et al. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 2000;59(11): 1011–1017

    PubMed  CAS  Google Scholar 

  60. Abe T, Tohgi H, Isobe C, et al. Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer's disease. J Neurosci Res 2002;70(3):447–450

    Article  PubMed  CAS  Google Scholar 

  61. Pratico D, Clark CM, Liun F, et al. Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 2002;59(6):972–976

    Article  PubMed  Google Scholar 

  62. Migliore L, Fontana I, Trippi F, et al. Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol Aging 2005;26(5):567–573

    Article  PubMed  CAS  Google Scholar 

  63. Rinaldi P, Polidori MC, Metastasio A, et al. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease. Neurobiol Aging 2003;24(7):915–919

    Article  PubMed  CAS  Google Scholar 

  64. Drake J, Link CD, Butterfield DA, Oxidative stress precedes fibrillar deposition of Alzheimer's disease amyloid beta-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 2003;24(3):415–420

    Article  PubMed  CAS  Google Scholar 

  65. Misonou H, Morishima-Kawashima M, Ihara Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry 2000;39(23):6951–6959

    Article  PubMed  CAS  Google Scholar 

  66. Gomez-Ramos A, Diaz-Nido J, Smith MA, et al. Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neurosci Res 2003;71(6):863–870

    Article  PubMed  CAS  Google Scholar 

  67. Nakashima H, Ishihara T, Yokota O, et al. Effects of alpha-tocopherol on an animal model of tauopathies. Free Radic Biol Med 2004;37(2):176–186

    Article  PubMed  CAS  Google Scholar 

  68. Sung S, Yao Y, Uryu K, et al. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer's disease. FASEB J 2004;18(2):323–325

    PubMed  CAS  Google Scholar 

  69. Bayer TA, Schafer S, Simons A, et al. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci U S A 2003;100(24):14187–14192

    Article  PubMed  CAS  Google Scholar 

  70. Li F, Calingasan NY, Yu F, et al. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J Neurochem 2004;89(5):1308–1312

    Article  PubMed  CAS  Google Scholar 

  71. Krishnan S, Chi EY, Wood SJ, et al. Oxidative dimer formation is the critical rate-limiting step for Parkinson's disease alpha-synuclein fibrillogenesis. Biochemistry 2003;42(3):829–837

    Article  PubMed  CAS  Google Scholar 

  72. Jenner P, Dexter DT, Sian J, et al. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease; The Royal Kings and Queens Parkinson's Disease Research Group. Ann Neurol 1992;32(suppl):S82–S87

    Article  PubMed  CAS  Google Scholar 

  73. Sofic E, Riederer P, Heinsen H, et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 1988;74(3):199–205

    Article  PubMed  CAS  Google Scholar 

  74. Berg D, Roggendorf W, Schroder U, et al. Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 2004;59(6):999–1005

    Article  Google Scholar 

  75. Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000;3(12):1301–1306

    Article  PubMed  CAS  Google Scholar 

  76. Sherer TB, Betarbet R, Stout AK, et al. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002;22(16):7006–7015

    PubMed  CAS  Google Scholar 

  77. Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 1990;54(3):823–827

    Article  PubMed  CAS  Google Scholar 

  78. Gu G, Reyes PE, Golden GT, et al. Mitochondrial DNA deletions/rearrangements in Parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 2002;61(7):634–639

    PubMed  CAS  Google Scholar 

  79. 7 Loeffler DA, Connor JR, Juneau PL, et al. Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J Neurochem 1995;65(2):710–724

    Google Scholar 

  80. Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 2001;21(9):3017–3023

    PubMed  CAS  Google Scholar 

  81. Mezzetti A, Pierdomenico SD, Costantini F, et al. Copper/zinc ratio and systemic oxidant load: effect of aging and aging-related degenerative diseases. Free Radic Biol Med 1998;25(6):676–681

    Article  PubMed  CAS  Google Scholar 

  82. Klein JA, Longo-Guess CM, Rossmann MP, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 2002;419(6905):367–374

    Article  PubMed  CAS  Google Scholar 

  83. Arendt T. Alzheimer's disease as a disorder of dynamic brain self-organization. Prog Brain Res 2005;147:355–378

    PubMed  CAS  Google Scholar 

  84. Yang Y, Mufson EJ, Herrup K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci 2003;23(7):2557–2563

    PubMed  CAS  Google Scholar 

  85. Andorfer C, Acker CM, Kress Y, et al. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 2005;25(22):5446–5454

    Article  PubMed  CAS  Google Scholar 

  86. Lee SS, Kim YM, Junn E, et al. Cell cycle aberrations by alpha-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiol Aging 2003;24(5):687–696

    Article  PubMed  CAS  Google Scholar 

  87. Zhu X, Raina AK, Perry G,. Smith MA. Alzheimer's disease: the two-hit hypothesis. Lancet Neurol 2004;3(4):219–226

    Article  PubMed  CAS  Google Scholar 

  88. Staropoli JF, McDermott C, Martinat C, et al. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 2003;37(5):735–749

    Article  PubMed  CAS  Google Scholar 

  89. Arrasate M, Mitra S, Schweitzer ES, et al. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004;431(7010):805–810

    Article  PubMed  CAS  Google Scholar 

  90. Davis DG, Schmitt FA, Wekstein DR, Markesbery WR. Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 1999;58(4):376–388

    PubMed  CAS  Google Scholar 

  91. Neve RL, Robakis NK. Alzheimer's disease: a re-examination of the amyloid hypothesis. Trends Neurosci 1998;21(1):15–19

    Article  PubMed  CAS  Google Scholar 

  92. Irizarry MC, McNamara M, Fedorchak K, et al. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 1997;56(9):965–973

    PubMed  CAS  Google Scholar 

  93. Cash AD, Aliev G, Siedlak SL, et al. Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation. Am J Pathol 2003;162(5):1623–1627

    PubMed  CAS  Google Scholar 

  94. Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 1999;58(2):188–197

    PubMed  CAS  Google Scholar 

  95. Perry RH, Irving D, Tomlinson BE. Lewy body prevalence in the aging brain: relationship to neuropsychiatric disorders, Alzheimer-type pathology and catecholaminergic nuclei. J Neurol Sci 1990;100(1-2):223–233

    Article  PubMed  CAS  Google Scholar 

  96. Lowe JS, Leigh N. Disorders of movement and system degenerations. In: Graham DI, Lantos PL (eds) Greenfield's Neuropathology. Arnold, London, 2002, pp 325–430.

    Google Scholar 

  97. De Rijk MC, Launer LJ, Berger K, et al. Prevalence of Parkinson's disease in Europe: a collaborative study of population-based cohorts; Neurologic Diseases in the Elderly Research Group. Neurology 2000;54(11 suppl 5):S21–S23

    PubMed  Google Scholar 

  98. Wakisaka Y, Furuta A, Tanizaki Y, et al. Age-associated prevalence and risk factors of Lewy body pathology in a general population: the Hisayama study. Acta Neuropathol (Berl) 2003;106(4):374–382

    Article  Google Scholar 

  99. Gertz HJ, Siegers A, Kuchinke J. Stability of cell size and nucleolar size in Lewy body containing neurons of substantia nigra in Parkinson's disease. Brain Res 1994;637(1-2): 339–341

    Article  PubMed  CAS  Google Scholar 

  100. Bergeron C, Petrunka C, Weyer L, Pollanen MS. Altered neurofilament expression does not contribute to Lewy body formation. Am J Pathol 1996;148(1):267–272

    PubMed  CAS  Google Scholar 

  101. Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392(6676):605–608

    Article  PubMed  CAS  Google Scholar 

  102. Matsuoka Y, Vila M, Lincoln S, et al. Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis 2001;8(3):535–539

    Article  PubMed  CAS  Google Scholar 

  103. Lo Bianco C, Ridet JL, Schneider BL, et al. Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc Natl Acad Sci U S A 2002;99(16):10813–10818

    Article  PubMed  CAS  Google Scholar 

  104. Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 2003;26:267–298

    Article  PubMed  CAS  Google Scholar 

  105. Walsh DM, Selkoe DJ. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 2004;11(3):213–228

    Article  PubMed  CAS  Google Scholar 

  106. Kontush A. Amyloid-beta: an antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer's disease. Free Radic Biol Med 2001;31(9):1120–1131

    Article  PubMed  CAS  Google Scholar 

  107. Zou K, Gong JS, Yanagisawa K, M. Michikawa M. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci 2002;22(12):4833–4841

    PubMed  CAS  Google Scholar 

  108. Bishop GM, Robinson SR. Human Abeta1-42 reduces iron-induced toxicity in rat cerebral cortex. J Neurosci Res 2003;73(3):316–323

    Article  PubMed  CAS  Google Scholar 

  109. Kontush A, Berndt C, Weber W, et al. Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med 2001;30(1):119–128

    Article  PubMed  CAS  Google Scholar 

  110. Lovell MA, Robertson JD, Teesdale WJ, et al. Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci 1998;158(1):47–52

    Article  PubMed  CAS  Google Scholar 

  111. Dong J, Atwood CS, Anderson VE, et al. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 2003;42(10):2768–2773

    Article  PubMed  CAS  Google Scholar 

  112. Cuajungco MP, Goldstein LE, Nunomura A, et al. Evidence that the beta-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem 2000;275(26):19439–19442

    Article  PubMed  CAS  Google Scholar 

  113. Lee HG, Perry G, Moreira PI, et al. Tau phosphorylation in Alzheimer's disease: pathogen or protector? Trends Mol Med 2005;11(4):164–169

    Article  PubMed  CAS  Google Scholar 

  114. Takeda A, Smith MA, Avila J, et al. In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J Neurochem 2000;75(3):1234–1241

    Article  PubMed  CAS  Google Scholar 

  115. Smith MA, Harris PL, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 1997;94(18):9866–9868

    Article  PubMed  CAS  Google Scholar 

  116. Sayre LM, Perry G, Harris PL, et al. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a central role for bound transition metals. J Neurochem 2000;74(1):270–279

    Article  PubMed  CAS  Google Scholar 

  117. Manning-Bog AB, McCormack AL, Purisai MG, et al. Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 2003;23(8):3095–3099

    PubMed  CAS  Google Scholar 

  118. Uversky VN, Yamin G, Souillac PO, et al. Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Lett 2002;517(1-3):239–244

    Article  PubMed  CAS  Google Scholar 

  119. Castellani RJ, Siedlak SL, Perry G, Smith MA. Sequestration of iron by Lewy bodies in Parkinson's disease. Acta Neuropathol (Berl) 2000;100(2):111–114.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Nunomura, A., Moreira, P.I., Zhu, X., Cash, A.D., Smith, M.A., Perry, G. (2008). Role of Oxidative Insult and Neuronal Survival in Alzheimer’s and Parkinson’s Diseases. In: Fisher, A., Memo, M., Stocchi, F., Hanin, I. (eds) Advances in Alzheimer’s and Parkinson’s Disease. Advances in Behavioral Biology, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72076-0_14

Download citation

Publish with us

Policies and ethics