Skip to main content

Visualization Systems for Multi-Dimensional Microscopy Images

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

Rapid developments in biological microscopy have prompted many advances in multi-dimensional imaging. However, threedimensional (3D) visualization techniques originated largely from applications involving computer-generated models of macroscopic objects. Subsequently, these methods have been adapted for biological visualization of mainly tomographic medical images and data from cut serial sections (e.g., Cookson et al., 1989 and review in Cookson, 1994). Most of these algorithms were not devised specifically for microscopy images, and only a few critical assessments have been made of suitable approaches for the most common 3D technique, laser-scanning microscopy (LSM) (Kriete and Pepping, 1992). Ultimately, we must rely on objective visualization of control, calibration, and test specimens in order to determine which visualization algorithms are appropriate for a particular analysis. Hardware developments and advances in software engineering tools have made available many 3D reconstruction systems that can be used to visualize multi-dimensional images. These are available from instrument manufacturers, third party vendors, research academics, and other microscopists. The author has attempted to collate important techniques used in these programs and to highlight particular packages that, not exclusively, illustrate various techniques described throughout the text. A representative collection of established commercial and noncommercial visualization programs available at the time of writing is listed in Table 14.1. For automatic image analysis and measurement, see Chapters 15 and 48, this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agard, D.A., Hiroaka, Y., Shaw, P., and Seadt, J.W., 1989, Microscopy in three dimensions, Methods Cell Biol., 30:353–377.

    Article  CAS  PubMed  Google Scholar 

  • Aslund, N., Liljeborg, A. Forsgren, P.-O., and Wahlsten, S., 1988, 3D scanning reconstruction, Laboratory Practice, 37:58–61.

    Google Scholar 

  • Bennet, S.T., Fricker, M.D., Bennet, M.D., and White, N.S., 1990, The 3D localisation of chromosomes using confocal microscopy, Trans. Roy. Microscopic. Soc. 1:441–444.

    Google Scholar 

  • Blinn, J.F., 1977, Models of light reflection for computer synthesised pictures, Computer Graphics 11:192–198.

    Article  Google Scholar 

  • Bolsover, S., 1995, Using fluorescence to probe calcium signalling mechanisms. Biochem. Soc. Trans. 23(3):627–629. Review.

    Google Scholar 

  • Born, M., and Wolf, E., 1991, Principles of Optics, Pergamon Press, Oxford.

    Google Scholar 

  • Boyde, A., 1987, Colour coded stereo images from the tandem scanning reflected light microscope, J. Microsc. 146:137–145.

    CAS  Google Scholar 

  • Boyde, A., 1992, Real time direct-view confocal light microscopy, In: Electronic Light Microscopy (D. Shotton, ed.), Wiley-Liss, New York, pp. 289–314.

    Google Scholar 

  • Braddick, O.J., and Sleigh, A.C., 1983, Physical and Biological Processing of Images, Springer-Verlag, Berlin.

    Google Scholar 

  • Brakenhoff, G.J., Van der Voort, H.T.M., and Oud, J.L., 1990, Threedimensional representation in confocal microscopy, In: Confocal Microscopy (T. Wilson, ed.), Academic Press, London, pp. 185–197.

    Google Scholar 

  • Carlsson, K., 1991, The influence of specimen refractive index, detector signal integration and non-uniform scan speed on the imaging properties in confocal microscopy, J. Microsc. 163:167–178.

    Google Scholar 

  • Cabral, B., Cam, N., and Foran, J., 1994, Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Symposium on Volume Visualization (Kaufman and Krueger, eds.), ACM Press, New York, pp. 91–98.

    Google Scholar 

  • Cheng, P.C., Acharya, R., Lin, T.H., Samarabandu, G., Shinozaki, D.D., Berezney, R., Meng, C., Tarng, W.H., Liou, W.S., Tan, T.C., Summers, R.G., Kuang, H., and Musial, C., 1992, 3D Image analysis and visualisation in light microscopy and X-ray micro-tomography, In: Visualisation in Miomedical Microscopies (A. Kriete, ed.), VCH, Weinhein, Germany.

    Google Scholar 

  • Cohen, A.R., Roysam, B., and Turner, J.N., 1994, Automated tracing and volume measurements of neurons from 3D confocal fluorescence microscopy data, J. Microsc. 173:103–114.

    CAS  Google Scholar 

  • Cook, R.L., and Torrance, K.E., 1982, Areflectance model for computer graphics, Computer Graphics 15:307–316.

    Article  Google Scholar 

  • Cookson, M.J., 1994, Three dimensional reconstruction in microscopy, Proc. RMS 29:3–10.

    Google Scholar 

  • Cookson, M.J., Davies, C.J., Entwistle, A., and Whimster, W.F., 1993, The microanatomy of the alveolar duct of the human lung imaged by confocal microscopy and visualised with computer based 3D reconstruction, Comput. Med. Imaging Graphics 17:201–210.

    Article  CAS  Google Scholar 

  • Cookson, M.J., Dykes, E., Holman, J.G., and Gray, A., 1989, A microcomputer based system for generating realistic 3D shaded images reconstructed from serial section, Eur. J. Cell Biol. 48(Suppl 25):69–72.

    Google Scholar 

  • Drebin, R.A., Carpenter, L., and Hanrahan, P., 1988, Volume rendering, Computer Graphics 22:65–74.

    Article  Google Scholar 

  • Elisa, A., Schmidt, F., Gattass, M., and Carvalho, P.C.P., 2000, Combined 3-D visualization of volume data and polygonal models using a shear-Warp algorithm, Computer Graphics 24:583–601.

    Article  Google Scholar 

  • Fahle, M., and de Luca, E., 1994, Spatio-temporal interpolation in depth, Vision Res. 34:343–348.

    Article  CAS  PubMed  Google Scholar 

  • Forsgren, P.O., Franksson, O., and Liljeborg, A., 1990, Software and electronics for a digital 3D microscope, In: Confocal Microscopy (T. Wilson, ed.), Academic Press, London.

    Google Scholar 

  • Freire, M., and Boyde, A., 1990, Study of Golgi-impregnated material using the confocal tandem scanning reflected light microscope, J. Microsc. 158:285–290.

    CAS  Google Scholar 

  • Fricker, M.D., and White, N.S., 1992, Wavelength considerations in confocal microscopy of botanical specimens, J. Microsc. 166:29–42.

    Google Scholar 

  • Frisby, J.P., and Pollard, S.B., 1991, Computational issues in solving the stereo correspondence problem, In: Computational Models of Visual Processing (M.S. Landy and J.A. Movshon, eds.), MIT Press, Cambridge, Massachusetts, pp. 331–358.

    Google Scholar 

  • Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F., 1990, Computer Graphics: Principles and Practice, 2nd ed., Addison Wesley Publishing Co., Reading, Massachusetts.

    Google Scholar 

  • Gordon, D., and Reynolds, A., 1995, Image shading of 3-dimensional objects, Computer Vision Graph. Image Proc. 29:361–376.

    Google Scholar 

  • Gouraud, H., 1971, Continuous shading of curved surfaces, IEEE Trans. Comput. 20:623–629.

    Google Scholar 

  • Guilak, F., 1993, Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections, J. Microsc. 173:245–256.

    Google Scholar 

  • Gundersen, H.J.G., Bagger, P., Bendtsen, T.F., Evans, S.M., Korbo, L., Marcussen N., 1998, The new stereological tools: dissector, fractionator, nucleator, and point sampled intercepts and their use in pathological research and diagnosis. Acta. Pathol. Microbiol. Scand. 96:857–881.

    Google Scholar 

  • Hallgren, R.C., and Buchholz, C., 1992, Improved solid surface rendering with the simulated fluorescence process (SFP) algorithm, J. Microsc. 166: rp3–rp4.

    Google Scholar 

  • He, T.L., Hong, L., Kaufman, A., and Pfister, H., 1996, Generation of transfer functions with stochastic search techniques, Proc. IEEE Visualization 489:227–234.

    Google Scholar 

  • Hell, S., Reiner, G., Cremer, C., and Stelzer, H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.

    Google Scholar 

  • Holmes, T.J., and Liu, Y.-H., 1992, Image restoration for 2D and 3D fluorescence microscopy, In: Visualization in Biomedical Microscopies (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 283–327.

    Google Scholar 

  • Howard, C.V., and Sandau, K., 1992, Measuring the surface area of a cell by the method of spatial grid with a CLSM-a demonstration, J. Microsc. 165:183–188.

    CAS  Google Scholar 

  • Hudson, B., and Makin, M.J., 1970, The optimum tilt angle for electron stereomicroscopy, J. Sci. Instr. (J. Phys. Eng.) 3:311.

    Google Scholar 

  • Kay, D.S., and Greenberg, D., 1979, Transparency for computer synthesised objects, Computer Graphics 13:158–164.

    Article  Google Scholar 

  • Kindlmann, G., and Durkin, J., 1998, Semi automatic generation of transfer function for direct volume rendering, Proc. IEEE 170:78–86.

    Google Scholar 

  • Kriete, A., and Pepping, T., 1992, Volumetric data representations in microscopy: Application to confocal and NMR-microimaging, In: Visualization in Biomedical Microscopies (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 329–360.

    Google Scholar 

  • Landy, M.S., and Movshom, J.A., 1991, Computational Models of Visual Processing, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Lacroute, P., and Levoy, M., 1994, Fast volume rendering using a shear-warp factorization of the viewing, SIGGRAPH 1994:451–458.

    Google Scholar 

  • Lorensen, W.E., and Cline, H.E., 1987, Marching cubes, a high resolution 3D surface construction algorithm. Computer Graphics 21:163–169.

    Article  Google Scholar 

  • Levoy, M., 1988, Display of surfaces from volume data, IEEE Computer Graphics Appl. 8:29–37.

    Article  Google Scholar 

  • Masters, B., 1992, Confocal ocular microscopy: a new paradigm for ocular visualisation, In: Visualization in Biomedical Microscopies (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 183–203.

    Google Scholar 

  • Mattfeldt, T., Clarke, A., and Archenhold, G., 1994, Estimation of the directional disribution of spatial fibre processes using stereology and confocal scanning laser microscopy, J. Microsc. 173:87–101.

    Google Scholar 

  • Marks, J., 1997, Design galleries: A general approach to setting parameters for computer graphics and animation, SIGGRAPH 1997:389–400.

    Article  Google Scholar 

  • Messerli, J.M., van der Voort, H.T.M., Rungger-Brandle, and Perriard, J.-C., 1993, Three dimensional visualisation of multi-channel volume data: The smSFP algorithm, Cytometry 14:723–735.

    Article  Google Scholar 

  • Murch, G.M., 1984, Physiological principles for the effective use of colour, IEEE Computer Graphics Appl. 4:49–54.

    Google Scholar 

  • Nakayama, 1985, Biological image motion processing: A review, Vision Res 25:625–660.

    Article  CAS  PubMed  Google Scholar 

  • Odgaard, A., Andersen, K., Melsen, F., and Gundersen, H.J., 1990, A direct method for fast three-dimensional serial reconstruction, J. Microsc. 159:335–342.

    CAS  Google Scholar 

  • Oldmixon, E.H., and Carlsson, K., 1993, Methods for large data volumes from confocal scanning laser microscopy of lung, J. Microsc. 170:221–228.

    CAS  Google Scholar 

  • Perry, V.H., and Cowey, A., 1985, The ganglion cell and cone distributions in the monkey’s retina: Implications for central magnification factors, Vision Res. 25:1795–1810.

    Article  CAS  PubMed  Google Scholar 

  • Phong, B.-T., 1975, Illumination for computer generated pictures, Commun. ACM 18:311–317.

    Article  Google Scholar 

  • Phong, B.-T., and Crow, F.C, 1975, Improved rendition of polygonal models of curved surfaces, In: Proceedings of the 2nd USA-Japan Computer Conference, ACM Press, New York, pp. 475–480.

    Google Scholar 

  • Poggio, G., and Poggio, T., 1984, The analysis of stereopsis, Ann. Rev. Neuro. 7:379–412.

    Article  CAS  Google Scholar 

  • Richards, W., 1970, Stereopsis and stereoblindness, Exp. Brain Res. 10:380–388.

    Article  CAS  Google Scholar 

  • Rigaut, J.P., Carvajal-Gonzalez, S., and Vassy, J., 1992, 3D Image cytometry, In: Visualization in Biomedical Microscopies (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 205–248.

    Google Scholar 

  • Robb, R.A., 1990, A software system for interactive and quantitative analysis of biomedical images, In: 3D Imaging in Medicine, NATO ASI Series, Vol. F (K.H. Hohne, H. Fuchs, and S.M. Pizer, eds.) 60:333–361.

    Google Scholar 

  • Sakas, G., Grimm, M., and Savopoulos, A., 1995, An optimized maximum intensity projection (MIP), In: Rendering Techniques ‘95 (P. Hanrahan and W. Purgathofer, eds.), Springer-Verlag, New York, pp. 51–63.

    Google Scholar 

  • Shaw, P.J., and Rawlins, D.J., 1991, The point-spread function of a confocal microscope: Its measurement and use in deconvolution of 3-D data

    Google Scholar 

  • J. Microsc. 163:151–165.

    Google Scholar 

  • Sheppard, C.J.R., and Gu, M., 1992, The significance of 3-D transfer functions in confocal scanning microscopy, J. Microsc. 165:377–390.

    Google Scholar 

  • Sheppard, C.J.R., and Gu, M., 1993, Modeling of three-dimensional fluorescence images of muscle fibres: An application of three-dimensional optical transfer function, J. Microsc. 169:339–345.

    CAS  Google Scholar 

  • Sheppard, C.J.R., Gu, M., and Roy, M., 1992, Signal-to noise ratio in confocal microscopy systems, J. Microsc. 168:209–218.

    Google Scholar 

  • Shotton, D.M., and White, N.S., 1989, Confocal scanning microscopy; 3-D biological imaging, Trends Biochem. Sci. 14:435–439.

    CAS  Google Scholar 

  • Torrance, K.E., and Sparrow, E.M., 1967, Theory for off-specular reflection from roughened surfaces. Opt. Soc. Am. 57:1105–1114.

    Article  Google Scholar 

  • Van der Voort, H.T.M., Brakenhoff, G.J., and Baarslag, M.W., 1989, Threedimensional visualization methods for confocal microscopy, J. Microsc. 153:123–132.

    Google Scholar 

  • Van Zandt, W.L., and Argiro, V.J., 1989, A new inlook on life, UNIX Rev. 7:52–57.

    Google Scholar 

  • Visser, T.D., Oud, J.L., and Brakenhoff, G.J., 1992, Refractive index and axial distance measurements in 3-D microscopy, Optik 90:17–19.

    Google Scholar 

  • Visser, T.D., Groen, F.C.A., and Brakenhoff, G.J., 1991, Absorption and scaterring correction in fluorescence confocal microscopy, J. Microsc. 163:189–200.

    Google Scholar 

  • Wallen, P., Carlsson, K., and Mossberg, K., 1992, Confocal laser scanning microscopy as a tool for studying the 3-D morphology of nerve cells, In: Visualization in Biomedical Microscopies (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 109–143.

    Google Scholar 

  • Warn, D.R., 1983, Lighting controls for synthetic images, Computer Graphics 17:13–24.

    Article  Google Scholar 

  • Watt, A., 1989, Three Dimensional Computer Graphics, Addison Wesley, Wokingham, England.

    Google Scholar 

  • Wilson, T., 1990, Confocal microscopy, In: Confocal Microscopy (T. Wilson, ed.), Academic Press, London, pp. 1–64.

    Google Scholar 

  • Woo, M. (1992). OpenGL Programming Guide, Addison Wesley, Wokingham, England.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

White, N.S. (2006). Visualization Systems for Multi-Dimensional Microscopy Images. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_14

Download citation

Publish with us

Policies and ethics