Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 310))

Abstract

Epigenetics describes changes in genome function that occur without a change in the DNA sequence. Dosage compensation is a prime example of the regulation of gene expression by an epigenetic mechanism. Dosage compensation has evolved to balance the expression of sex-linked genes in males and females, which possess different numbers of sex chromosomes. However, the genetic sequence of the chromosomes is the same in both sexes. This mechanism therefore needs (1) to function in a sex-specific manner, (2) to target the sex chromosome from amongst the autosomes and (3) to establish and maintain through development a precise, equalised level of gene expression in one sex compared to the other. The process by which dosage compensation is orchestrated has been well characterised in fruit flies and mammals. Although each has evolved a specific dosage-compensation mechanism, these systems share some underlying themes; the molecular components that mediate dosage compensation in both include non-coding RNA molecules, which act as nucleation points for the compensation process. Both systems utilise chromatin-modifying enzymes to remodel large domains of a chromosome. This review will discuss the mechanism of dosage compensation in Drosophila in light of recent developments that have brought into question the previous model of dosage compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5:367–375

    Article  PubMed  CAS  Google Scholar 

  • Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein-RNA interaction modules. Nature 407:405–409

    Article  PubMed  CAS  Google Scholar 

  • Amrein H, Axel R (1997) Genes expressed in neurons of adult male Drosophila. Cell 88:459–469

    Article  PubMed  CAS  Google Scholar 

  • Bashaw GJ, Baker BS (1995) The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development 121:3245–3258

    PubMed  CAS  Google Scholar 

  • Bashaw GJ, Baker BS (1997) The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell 89:789–798

    Article  PubMed  CAS  Google Scholar 

  • Bhadra U, Pal-Bhadra M, Birchler JA (1999) Role of the male specific lethal (msl) genes in modifying the effects of sex chromosomal dosage in Drosophila. Genetics 152:249–268

    PubMed  CAS  Google Scholar 

  • Bhadra U, Pal-Bhadra M, Birchler JA (2000) Histone acetylation and gene expression analysis of sex lethal mutants in Drosophila. Genetics 155:753–763

    PubMed  CAS  Google Scholar 

  • Birchler JA (1992) Expression of cis-regulatory mutations of the white locus in metafemales of Drosophila melanogaster. Genet Res 59:11–18

    PubMed  CAS  Google Scholar 

  • Birchler JA (1996) X chromosome dosage compensation in Drosophila. Science 272:1190–1191

    PubMed  CAS  Google Scholar 

  • Birchler JA, Schwartz D (1979) Mutational study of the alcohol dehydrogenase-1 FCm duplication in maize. Biochem Genet 17:1173–1180

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Bhadra U, Bhadra MP, Auger DL (2001) Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev Biol 234:275–288

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Pal-Bhadra M, Bhadra U (2003) Dosage dependent gene regulation and the compensation of the X chromosome in Drosophila males. Genetica 117:179–190

    Article  PubMed  CAS  Google Scholar 

  • Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM, Kuroda MI (1994) Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8:96–104

    PubMed  CAS  Google Scholar 

  • Bouazoune K, Korenjak M, Brehm A (2004) The dosage-compensation complex in flies and humans. Genome Biol 5:352

    Article  PubMed  Google Scholar 

  • Buscaino A, Kocher T, Kind JH, Holz H, Taipale M, Wagner K, Wilm M, Akhtar A (2003) MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol Cell 11:1265–1277

    Article  PubMed  CAS  Google Scholar 

  • Chang KA, Kuroda MI (1998) Modulation of MSL1 abundance in female Drosophila contributes to the sex specificity of dosage compensation. Genetics 150:699–709

    PubMed  CAS  Google Scholar 

  • Chiang PW, Kurnit DM (2003) Study of dosage compensation in Drosophila. Genetics 165:1167–1181

    PubMed  CAS  Google Scholar 

  • Copps K, Richman R, LymanL M, Chang KA, Rampersad-Ammons J, Kuroda MI(1998) Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly. EMBO J 17:5409–5417

    Article  PubMed  CAS  Google Scholar 

  • Corona DF, Clapier CR, Becker PB, Tamkun JW (2002) Modulation of ISWI function by site-specific histone acetylation. EMBO Rep 3:242–247

    Article  PubMed  CAS  Google Scholar 

  • de la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA (2005) Do proteinmotifs read the histone code? Bioessays 27:164–175

    Article  PubMed  CAS  Google Scholar 

  • Demakova OV, Kotlikova IV, Gordadze PR, Alekseyenko AA, Kuroda MI, Zhimulev IF (2003) The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster. Chromosoma 112:103–115

    Article  PubMed  CAS  Google Scholar 

  • Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, Prestel M, Daubresse G, Verardo M, Moseley SL, Berloco M, et al (2000) The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell 5:355–365

    Article  PubMed  CAS  Google Scholar 

  • DiBartolomeis SM, Tartof KD, Jackson FR (1992) A superfamily of Drosophila satellite related (SR) DNA repeats restricted to the X chromosome euchromatin. Nucleic Acids Res 20:1113–1116

    PubMed  CAS  Google Scholar 

  • Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229

    Article  PubMed  CAS  Google Scholar 

  • Erickson JW, Cline TW (1998) Key aspects of the primary sex determination mechanism are conserved across the genus Drosophila. Development 125:3259–3268

    PubMed  CAS  Google Scholar 

  • Fagegaltier D, Baker BS (2004) X chromosome sites autonomously recruit the dosage compensation complex in Drosophila males. PLoS Biol 2:e341

    Article  PubMed  CAS  Google Scholar 

  • Franke A, Baker BS (1999) The rox1 and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol Cell 4:117–122

    Article  PubMed  CAS  Google Scholar 

  • Gebauer F, Grskovic M, Hentze MW (2003) Drosophila sex-lethal inhibits the stable association of the 40S ribosomal subunit with msl-2 mRNA. Mol Cell 11:1397–1404

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Chatterjee RN, Bunick D, Manning JE, Lucchesi JC (1989) The LSP1-alphagene of Drosophila melanogaster exhibits dosage compensation when it is relocated to a different site on the X chromosome. EMBO J 8:1191–1196

    PubMed  CAS  Google Scholar 

  • Gilfillan GD, Dahlsveen IK, Becker PB (2004) Lifting a chromosome: dosage compensation in Drosophila melanogaster. FEBS Lett 567:8–14

    Article  PubMed  CAS  Google Scholar 

  • Gorman M, Franke A, Baker BS (1995) Molecular characterization of the male-specific lethal-3 gene and investigations of the regulation of dosage compensation in Drosophila. Development 121:463–475

    PubMed  CAS  Google Scholar 

  • Grskovic M, Hentze MW, Gebauer F (2003) A co-repressor assembly nucleated by Sexlethal in the 3’UTR mediates translational control of Drosophila msl-2 mRNA. EMBO J 22:5571–5581

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Wei X, Pannuti A, Lucchesi JC (2000) Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities. EMBO J 19:5202–5211

    Article  PubMed  CAS  Google Scholar 

  • Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648–2663

    Article  PubMed  CAS  Google Scholar 

  • Hiebert JC, Birchler JA (1994) Effects of the maleless mutation on X and autosomal gene expression in Drosophila melanogaster. Genetics 136:913–926

    PubMed  CAS  Google Scholar 

  • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBOJ 16:2054–2060

    Article  CAS  Google Scholar 

  • Hung MS, Shen CK (2003) Eukaryotic methyl-CpG-binding domain proteins and chromatin modification. Eukaryot Cell 2:841–846

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Arib G, Lin C, Van Houwe G, Laemmli UK (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109:551–562

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Wang Y, Walker DL, Dong H, Conley C, Johansen J, Johansen KM (1999) JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell 4:129–135

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Wang Y, Johansen J, Johansen KM (2000) JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specific lethal (MSL) dosage compensation complex. J Cell Biol 149:1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552

    Article  PubMed  CAS  Google Scholar 

  • Kageyama Y, Mengus G, Gilfillan G, Kennedy HG, Stuckenholz C, Kelley RL, Becker PB, Kuroda MI (2001) Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site. EMBO J 20:2236–2245

    Article  PubMed  CAS  Google Scholar 

  • Kelley RL, Solovyeva I, Lyman LM, Richman R, Solovyev V, Kuroda MI (1995) Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81:867–877

    Article  PubMed  CAS  Google Scholar 

  • Kelley RL, Wang J, Bell L, Kuroda MI (1997) Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387:195–199

    Article  PubMed  CAS  Google Scholar 

  • Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI (1999) Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98:513–522

    Article  PubMed  CAS  Google Scholar 

  • Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13:2339–2352

    Article  PubMed  CAS  Google Scholar 

  • Kuo MH, Zhou J, Jambeck P, Churchill ME, Allis CD (1998) Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev 12:627–639

    PubMed  CAS  Google Scholar 

  • Kuo MH, vom Baur E, Struhl K, Allis CD (2000) Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell 6:1309–1320

    Article  PubMed  CAS  Google Scholar 

  • Kuroda MI, Kernan MJ, Kreber R, Ganetzky B, Baker BS (1991) The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66:935–947

    Article  PubMed  CAS  Google Scholar 

  • Lowenhaupt K, Rich A, Pardue ML (1989) Nonrandom distribution of long monoand dinucleotide repeats in Drosophila chromosomes: correlations with dosage compensation, heterochromatin, and recombination. Mol Cell Biol 9:1173–1182

    PubMed  CAS  Google Scholar 

  • Lyman LM, Copps K, Rastelli L, Kelley RL, Kuroda MI (1997) Drosophila male-specific lethal-2 protein: structure/function analysis and dependence on MSL-1 for chromosome association. Genetics 147:1743–1753

    PubMed  CAS  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  PubMed  CAS  Google Scholar 

  • Marin I (2003) Evolution of chromatin-remodeling complexes: comparative genomics reveals the ancient origin of “novel” compensasome genes. J Mol Evol 56:527–539

    Article  PubMed  CAS  Google Scholar 

  • Marin I, Baker BS (2000) Origin and evolution of the regulatory gene male-specific lethal-3. Mol Biol Evol 17:1240–1250

    PubMed  CAS  Google Scholar 

  • Marin I, Franke A, Bashaw GJ, Baker BS (1996) The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature 383:160–163

    Article  PubMed  CAS  Google Scholar 

  • Meller VH, Rattner BP (2002) The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J 21:1084–1091

    Article  PubMed  CAS  Google Scholar 

  • Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL (1997) roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88:445–457

    Article  PubMed  CAS  Google Scholar 

  • Meller VH, Gordadze PR, Park Y, Chu X, Stuckenholz C, Kelley RL, Kuroda MI (2000) Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr Biol 10:136–143

    Article  PubMed  CAS  Google Scholar 

  • Mermoud JE, Popova B, Peters AH, Jenuwein T, Brockdorff N (2002) Histone H3 lysine 9 methylation occurs rapidly at the onset of random X inactivation. Curr Biol 12:247–251

    Article  PubMed  CAS  Google Scholar 

  • Meyer BJ, Casson LP (1986) Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell 47:871–881

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee AS, Beermann W (1965) Synthesis of ribonucleic acid by the X-chromosomes of Drosophila melanogaster and the problem of dosage compensation. Nature 207:785–786

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD, Montminy M (1997) RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Oh H, Bone JR, Kuroda MI (2004) Multiple classes of MSL binding sites target dosage compensation to the X chromosome of Drosophila. Curr Biol 14:481–487

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1967) Sex Chromosomes and sex-linked genes. Springer-Verlag, Heidelberg, Berlin, New York

    Google Scholar 

  • Pal Bhadra M, Bhadra U, Kundu J, Birchler JA (2005) Gene expression analysis of the function of the MSL complex in Drosophila. Genetics 169:2061–2074

    Article  CAS  Google Scholar 

  • Pannuti A, Lucchesi JC (2000) Recycling to remodel: evolution of dosage-compensation complexes. Curr Opin Genet Dev 10:644–650

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML, Lowenhaupt K, Rich A, Nordheim A (1987) (dC-dA)n.(dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J 6:1781–1789

    PubMed  CAS  Google Scholar 

  • Park Y, Kelley RL, Oh H, Kuroda MI, Meller VH (2002) Extent of chromatin spreading determined by roX RNA recruitment of MSL proteins. Science 298:1620–1623

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Mengus G, Bai X, Kageyama Y, Meller VH, Becker PB, Kuroda MI (2003) Sequence-specific targeting of Drosophila roX genes by the MSL dosage compensation complex. Mol Cell 11:977–986

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    Article  PubMed  CAS  Google Scholar 

  • Protacio RU, Li G, Lowary PT, Widom J (2000) Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome. Mol Cell Biol 20:8866–8878

    Article  PubMed  CAS  Google Scholar 

  • Rattner BP, Meller VH (2004) Drosophila male-specific lethal 2 protein controls sex-specific expression of the roX genes. Genetics 166:1825–1832

    Article  PubMed  CAS  Google Scholar 

  • Reid JL, Iyer VR, Brown PO, Struhl K (2000) Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 6:1297–1307

    Article  PubMed  CAS  Google Scholar 

  • Richter L, Bone JR, Kuroda MI (1996) RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1:325–336

    Article  PubMed  CAS  Google Scholar 

  • Sabl JF, Birchler JA (1993) Dosage dependent modifiers of white alleles in Drosophila melanogaster. Genet Res 62:15–22

    Article  PubMed  CAS  Google Scholar 

  • Sass GL, Pannuti A, Lucchesi JC (2003) Male-specific lethal complex of Drosophila targets activated regions of the X chromosome for chromatin remodeling. Proc Natl Acad Sci U S A 100:8287–8291

    Article  PubMed  CAS  Google Scholar 

  • Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6:73–77

    Article  PubMed  CAS  Google Scholar 

  • Scott MJ, Pan LL, Cleland SB, Knox AL, Heinrich J (2000) MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. EMBO J 19:144–155

    Article  PubMed  CAS  Google Scholar 

  • Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RG, Allis CD, Lucchesi JC (2000) The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20:312–318

    Article  PubMed  CAS  Google Scholar 

  • Smith ER, Allis CD, Lucchesi JC (2001) Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J Biol Chem 276:31483–31486

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Straub T, Neumann MF, Prestel M, Kremmer E, Kaether C, Haass C, Becker PB (2005) Stable chromosomal association of MSL2 defines a dosage-compensated nuclear compartment. Chromosoma 114(5):352–364

    Article  PubMed  Google Scholar 

  • Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25(15):6798–6810

    Article  PubMed  CAS  Google Scholar 

  • Taipale M, Akhtar A (2005) Chromatin mechanisms in Drosophila dosage compensation. Prog Mol Subcell Biol 38:123–149

    Article  PubMed  CAS  Google Scholar 

  • Thomson S, Clayton AL, Mahadevan LC (2001) Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol Cell 8:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Tse C, Sera T, Wolffe AP, Hansen JC (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18:4629–4638

    PubMed  CAS  Google Scholar 

  • Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang W, Jin Y, Johansen J, Johansen KM (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105:433–443

    Article  PubMed  CAS  Google Scholar 

  • Waring GL, Pollack JC (1987) Cloning and characterization of a dispersed, multicopy, X chromosome sequence in Drosophila melanogaster. Proc Natl Acad Sci U S A 84:2843–2847

    Article  PubMed  CAS  Google Scholar 

  • Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2002) Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl Acad Sci U S A 99:3517–3522

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 17:2733–2740

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Yang Y, Scott MJ, Pannuti A, Fehr KC, Eisen A, Koonin EV, Fouts DL, Wrightsman R, Manning JE, et al (1995) Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J 14:2884–2895

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rea, S., Akhtar, A. (2006). MSL Proteins and the Regulation of Gene Expression. In: Doerfler, W., Böhm, P. (eds) DNA Methylation: Development, Genetic Disease and Cancer. Current Topics in Microbiology and Immunology, vol 310. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31181-5_7

Download citation

Publish with us

Policies and ethics