Skip to main content

NMR as a Unique Tool in Assessment and Complex Determination of Weak Protein–Protein Interactions

  • Chapter
  • First Online:
NMR of Proteins and Small Biomolecules

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 326))

Abstract

Protein–protein interactions are crucial for a wide variety of biological processes. These interactions range from high affinity (K d<nM) to very low affinity (K d>mM). While much is known about the nature of high affinity protein complexes, our knowledge about structural characteristics of weak protein–protein interactions (wPPIs) remains limited: in addition to the technical difficulties associated with their investigation, historically wPPIs used to be considered physiologically irrelevant. However, emerging evidence suggests that wPPIs, either in the form of intact protein complexes or as part of large molecular machineries, are fundamentally important for promoting rapid on/off switches of signal transduction, reversible cell–cell contacts, transient assembly/disassembly of signaling complexes, and enzyme–substrate recognition. Therefore an atomic-level elucidation of wPPIs is vital to understanding a cornucopia of diverse cellular events. Nuclear magnetic resonance (NMR) is famous for its unique abilities to study wPPIs and, by utilization of the new technical developments combined with sparse data based computational analysis, it now allows rapid identification and structural characterization of wPPIs. Here we present our perspective on the NMR methods employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gavin AC, Bosche M et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    Article  CAS  Google Scholar 

  2. Ho Y, Gruhler A et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183

    Article  CAS  Google Scholar 

  3. Nooren IM, Thornton JM (2003) Diversity of protein-protein interactions. EMBO J 22(14):3486–3492

    Article  CAS  Google Scholar 

  4. Perkins JR, Diboun I et al (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18(10):1233–1243

    Article  CAS  Google Scholar 

  5. Prudencio M, Ubbink M (2004) Transient complexes of redox proteins: structural and dynamic details from NMR studies. J Mol Recognit 17(6):524–539

    Article  CAS  Google Scholar 

  6. O’Connell MR, Gamsjaeger R et al (2009) The structural analysis of protein-protein interactions by NMR spectroscopy. Proteomics 9(23):5224–5232

    Article  Google Scholar 

  7. Qin J, Vinogradova O et al (2001) Protein-protein interactions probed by nuclear magnetic resonance spectroscopy. Meth Enzymol 339:377–389

    Article  CAS  Google Scholar 

  8. Zuiderweg ER (2002) Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41(1):1–7

    Article  CAS  Google Scholar 

  9. Vaynberg J, Qin J (2006) Weak protein-protein interactions as probed by NMR spectroscopy. Trends Biotechnol 24(1):22–27

    Article  CAS  Google Scholar 

  10. Clore GM, Gronenborn AM (1998) Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol 16(1):22–34

    Article  CAS  Google Scholar 

  11. Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  12. Pervushin K, Riek R et al (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371

    Article  CAS  Google Scholar 

  13. Velyvis A, Vaynberg J et al (2003) Structural and functional insights into PINCH LIM4 domain-mediated integrin signaling. Nat Struct Biol 10(7):558–564

    Article  CAS  Google Scholar 

  14. Hall DA, Vander Kooi CW et al (2001) Mapping the interactions between flavodoxin and its physiological partners flavodoxin reductase and cobalamin-dependent methionine synthase. Proc Natl Acad Sci USA 98(17):9521–9526

    Article  CAS  Google Scholar 

  15. Takahashi H, Nakanishi T et al (2000) A novel NMR method for determining the interfaces of large protein-protein complexes. Nat Struct Biol 7(3):220–223

    Article  CAS  Google Scholar 

  16. Clore GM, Gronenborn AM (1982) The two-dimensional transferred nuclear Overhauser effect. J Magn Reson 48:402–417

    CAS  Google Scholar 

  17. Zwahlen C, Legault P et al (1997) Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacterio-phage l N-peptide/boxB RNA complex. J Am Chem Soc 119:711–721

    Article  Google Scholar 

  18. Vaynberg J, Fukuda T et al (2005) Structure of an ultraweak protein-protein complex and its crucial role in regulation of cell morphology and motility. Mol Cell 17(4):513–523

    Article  CAS  Google Scholar 

  19. Walters KJ, Matsuo H et al. (1997) A simple method to distinguish intermonomer nuclear Overhauser effects in homodimeric proteins with C2 symmetry. J Am Chem Soc 119:5958–5959

    Google Scholar 

  20. Bax A, Kontaxis G et al (2001) Dipolar couplings in macromolecular structure determination. Meth Enzymol 339:127–174

    Article  CAS  Google Scholar 

  21. Prestegard JH, Bougault CM et al (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104(8):3519–3540

    Article  CAS  Google Scholar 

  22. Sanders CR, Hare BJ et al. (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog Nucl Magn Reson Spectrosc 26:421–444

    Google Scholar 

  23. Clore GM, Starich MR et al. (1998) Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J Am Chem Soc 120:10571–10572

    Google Scholar 

  24. Chou JJ, Kaufman JD et al (2002) Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J Am Chem Soc 124(11):2450–2451

    Article  CAS  Google Scholar 

  25. Ishii Y, Markus MA et al (2001) Controlling residual dipolar couplings in high-resolution NMR of proteins by strain induced alignment in a gel. J Biomol NMR 21(2):141–151

    Article  CAS  Google Scholar 

  26. Lorieau J, Yao L et al (2008) Liquid crystalline phase of G-tetrad DNA for NMR study of detergent-solubilized proteins. J Am Chem Soc 130(24):7536–7537

    Article  CAS  Google Scholar 

  27. Lipsitz RS, Tjandra N (2004) Residual dipolar couplings in NMR structure analysis. Annu Rev Biophys Biomol Struct 33:387–413

    Article  CAS  Google Scholar 

  28. Bolon PJ, Al-Hashimi HM et al (1999) Residual dipolar coupling derived orientational constraints on ligand geometry in a 53 kDa protein-ligand complex. J Mol Biol 293(1):107–115

    Article  CAS  Google Scholar 

  29. Kosen PA (1989) Spin labeling of proteins. Meth Enzymol 177:86–121

    Article  CAS  Google Scholar 

  30. Bertini I, Luchinat C et al (2005) NMR spectroscopy of paramagnetic metalloproteins. Chembiochem 6(9):1536–1549

    Article  CAS  Google Scholar 

  31. Otting G (2008) Prospects for lanthanides in structural biology by NMR. J Biomol NMR 42(1):1–9

    Article  CAS  Google Scholar 

  32. Mahoney NM, Rastogi VK et al. (2000) Binding orientation of proline-rich peptides in solution: polarity of the profilin–ligand interaction. J Am Chem Soc 122:7851–7852

    Google Scholar 

  33. Bloembergen N, Morgan LO (1961) Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation. J Chem Phys 34:842–850

    Google Scholar 

  34. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data. Biochemistry 39(18):5355–5365

    Article  CAS  Google Scholar 

  35. Iwahara J, Anderson DE et al (2003) EDTA-derivatized deoxythymidine as a tool for rapid determination of protein binding polarity to DNA by intermolecular paramagnetic relaxation enhancement. J Am Chem Soc 125(22):6634–6635

    Article  CAS  Google Scholar 

  36. Iwahara J, Tang C et al (2007) Practical aspects of (1)H transverse paramagnetic relaxation enhancement measurements on macromolecules. J Magn Reson 184(2):185–195

    Article  CAS  Google Scholar 

  37. Clore GM, Tang C et al (2007) Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17(5):603–616

    Article  CAS  Google Scholar 

  38. Iwahara J, Schwieters CD et al (2004) Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J Am Chem Soc 126(18):5879–5896

    Article  CAS  Google Scholar 

  39. Deshmukh L, Gorbatyuk V et al (2010) Integrin beta3 phosphorylation dictates its complex with Shc PTB domain. J Biol Chem 285:34875–34884

    Article  CAS  Google Scholar 

  40. Wang X, Fukuda K et al (2008) The structure of alpha-parvin CH2-paxillin LD1 complex reveals a novel modular recognition for focal adhesion assembly. J Biol Chem 283(30):21113–21119

    Article  CAS  Google Scholar 

  41. Iwahara J, Clore GM (2006) Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 440(7088):1227–1230

    Article  CAS  Google Scholar 

  42. Tang C, Iwahara J et al (2006) Visualization of transient encounter complexes in protein-protein association. Nature 444(7117):383–386

    Article  CAS  Google Scholar 

  43. Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109(9):4108–4139

    Article  CAS  Google Scholar 

  44. Schmitz C, John M et al (2006) Efficient chi-tensor determination and NH assignment of paramagnetic proteins. J Biomol NMR 35(2):79–87

    Article  CAS  Google Scholar 

  45. Keniry MA, Park AY et al (2006) Structure of the theta subunit of Escherichia coli DNA polymerase III in complex with the epsilon subunit. J Bacteriol 188(12):4464–4473

    Article  CAS  Google Scholar 

  46. Ubbink M, Ejdeback M et al (1998) The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 6(3):323–335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Vinogradova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vinogradova, O., Qin, J. (2011). NMR as a Unique Tool in Assessment and Complex Determination of Weak Protein–Protein Interactions. In: Zhu, G. (eds) NMR of Proteins and Small Biomolecules. Topics in Current Chemistry, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_216

Download citation

Publish with us

Policies and ethics