Skip to main content
Log in

Stability properties of elementary dynamic models of membrane transport

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aihara, K. and G. Matsumoto (1982). Temporally coherent organization and instabilities in squid giant axons. J. Theor. Biol. 95, 697–720.

    Article  MathSciNet  Google Scholar 

  • Baumgarten, C. M. and J. J. Feher (1995). Osmosis and the regulation of the cell volume, in Cell Physiology. Source Book, N. Sperelakis (Ed.), New York: Academic Press, pp. 180–211.

    Google Scholar 

  • Blumenthal, R., J.-P. Changeaux and R. Lefever (1970). Membrane excitability and dissipative instabilities. J. Membr. Biol. 2, 351–374.

    Article  Google Scholar 

  • Cristina, E. and J. A. Hernández (2000). An elementary kinetic model of energy coupling in biological membranes. Biochim. Biophys. Acta 1460, 276–290.

    Article  Google Scholar 

  • Csonka, L. N. and A. D. Hanson (1991). Prokariotic osmoregulation: genetics and physiology. Annu. Rev. Microbiol. 15, 569–606.

    Article  Google Scholar 

  • Diamond, J. M. (1982). Transcellular cross-talk between epithelial cell membranes. Nature 300, 683–685.

    Article  Google Scholar 

  • Falciatore, A., M. R. d’Alcalà, P. Croot and C. Bowler (2000). Perception of environmental signals by a marine diatom. Science 288, 2363–2366.

    Article  Google Scholar 

  • Goldbeter, A. (1991). Models for oscillations and excitability in biochemical systems, in Biological Kinetics, L. A. Segel (Ed.), Cambridge, London: Cambridge University Press, pp. 107–154.

    Google Scholar 

  • Goldman, D. E. (1943). Potential, impedance and rectification in membranes. J. Gen. Physiol. 27, 37–60.

    Article  Google Scholar 

  • Hansen, U.-P., D. Gradmann, D. Sanders and C. L. Slayman (1981). Interpretation of current-voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms. J. Membr. Biol. 63, 165–190.

    Article  Google Scholar 

  • Hassard, B. (1978). Bifurcation of periodic solutions of the Hodgkin-Huxley model for the squid giant axons. J. Theor. Biol. 71, 401–420.

    Article  MathSciNet  Google Scholar 

  • Hernández, J. A. and E. Cristina (1998). Modeling cell volume regulation in nonexcitable cells: the roles of the Na+ pump and of cotransport systems. Am. J. Physiol. 275, C1067–C1080.

    Google Scholar 

  • Hernández, J. A. and S. Chifflet (2000). Electrogenic properties of the sodium pump in a dynamic model of membrane transport. J. Membr. Biol. 176, 41–52.

    Article  Google Scholar 

  • Hernández, J. A., J. Fischbarg and L. S. Liebovitch (1989). Kinetic model of the effects of electrogenic enzymes on the membrane potential. J. Theor. Biol. 137, 113–125.

    Google Scholar 

  • Hill, T. L. (1977). Free Energy Transduction in Biology, New York: Academic Press, pp. 1–56.

    Google Scholar 

  • Hodgkin, A. L. and B. Katz (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. Lond. 108, 37–77.

    Google Scholar 

  • Jakobsson, E. (1980). Interactions of cell volume, membrane potential, and membrane transport parameters. Am. J. Physiol. 238, C196–C206.

    Google Scholar 

  • Katchalsky, A. and R. Spangler (1968). Dynamics of membrane processes. Quart. Rev. Biophys. I, 127–175.

    Article  Google Scholar 

  • Keener, J. and J. Sneyd (1998). Mathematical Physiology, New York: Springer, pp. 33–73.

    MATH  Google Scholar 

  • Lang, F., G. L. Busch, M. Ritter, H. Volkl, S. Waldegger, E. Gulbins and D. Haussinger (1998). Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247–306.

    Google Scholar 

  • Läuger, P. (1991). Electrogenic Ion Pumps, Sunderland, MA: Sinauer Associates, pp. 3–14.

    Google Scholar 

  • Lemieux, D. R., F. A. Roberge and P. Savard (1990). A model study of the contribution of active Na-K transport to membrane repolarization in cardiac cells. J. Theor. Biol. 142, 1–33.

    Google Scholar 

  • May, R. M. (1974). Stability and Complexity in Model Ecosystems, Princeton, NJ: Princeton University Press, pp. 13–36.

    Google Scholar 

  • Minton, A. P. (1983). The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol. Cell. Biochem. 55, 119–140.

    Article  Google Scholar 

  • Mizraji, E., L. Acerenza and J. A. Hernández (1988). Time delays in metabolic control systems. Biosystems 22, 11–17.

    Article  Google Scholar 

  • Murray, J. D. (1989). Mathematical Biology, Berlin: Springer, pp. 36–62.

    MATH  Google Scholar 

  • Olivotto, M., A. Arcangeli, M. Carlà and E. Wanke (1996). Electric fields at the plasma membrane level: a neglected element in the mechanisms of cell signalling. Bioessays 18, 495–504.

    Article  Google Scholar 

  • Parker, J. C. (1993). In defense of cell volume? Am. J. Physiol. 2650, C1191–C1200.

    Google Scholar 

  • Post, R. L. and P. C. Jolly (1957). The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25, 118–128.

    Article  Google Scholar 

  • Reuss, L. and C. U. Cotton (1994). Volume regulation in epithelia: transcellular transport and cross-talk, in Cellular and Molecular Physiology of Cell Volume Regulation, K. Strange (Ed.), Boca Raton, FL: CRC Press, pp. 31–47.

    Google Scholar 

  • Ricard, J. and G. Noat (1984). Enzyme reactions at the surface of living cells: II. Destabilization in the membranes and conduction of signals. J. Theor. Biol. 109, 571–580.

    MathSciNet  Google Scholar 

  • Schultz, S. G. (1981). Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through”. Am. J. Physiol. 242, F579–F590.

    Google Scholar 

  • Segel, L. A. (1987). Modeling Dynamic Phenomena in Molecular and Cellular Biology, Cambridge, London: Cambridge University Press, pp. 36–50.

    MATH  Google Scholar 

  • Stein, W. D. (1990). Channels, Carriers and Pumps. An Introduction to Membrane Transport, New York: Academic Press, pp. 271–310.

    Google Scholar 

  • Tosteson, D. C. and J. F. Hoffman (1960). Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44, 169–194.

    Article  Google Scholar 

  • Weinstein, A. M. (1995). A kinetically defined Na+/H+ antiporter within a mathematical model of the rat proximal tubule. J. Gen. Physiol. 105, 617–641.

    Article  Google Scholar 

  • Weinstein, A. M. (1997). Dynamics of cellular homeostasis: recovery time for a perturbation from equilibrium. Bull. Math. Biol. 59, 451–481.

    Article  MATH  Google Scholar 

  • Weiss, T. F. (1996). Cellular Biophysics. Transport, Vol. 1, Cambridge, MA: MIT Press, pp. 571–643.

    Google Scholar 

  • Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus and G. N. Somero (1982). Living with water stress: evolution of osmolyte systems. Science 217, 1214–1222.

    Google Scholar 

  • Zeuthen, T. (1996). Molecular Mechanisms of Water Transport, Heidelberg: Springer, pp. 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, J.A. Stability properties of elementary dynamic models of membrane transport. Bull. Math. Biol. 65, 175–197 (2003). https://doi.org/10.1006/bulm.2002.0325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0325

Keywords

Navigation