Skip to main content
Log in

Membrane excitability and dissipative instabilities

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Electrical excitation is interpreted in terms of a cooperative structural transition of membrane protomers coupled with the translocation of a permeant molecule in a non-equilibrium environment. Equations for flow of permeant and for membrane conformation are derived for the simple case of a single non-charged permeant. On the basis of a few simple physical assumptions, the theory predicts several important properties of electrically excitable membranes: the steepness of the relation between membrane conductance and potential, the presence of a negative conductance, and the occurrence of instabilities following rapid perturbations of membrane environment, giving rise to some simple cases of action potentials. Several experimental tests of the membrane with its changes of electrical properties are proposed. From a thermodynamic point of view, an electrically excitable membrane, in its resting state, lies beyond a dissipative instability and consequently is in a non-equilibrium state but with stable organization, a “dissipative structure” of Prigogine. Membrane excitation following a small perturbation of the environment would correspond to a jump from such an organization to another stable organization but close to thermodynamic equilibrium. It is shown how the cooperative molecular properties of the membrane are amplified by energy dissipation at the macroscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, G. 1968. Theorie der Nervenerregung als kooperativer Kationenaustausch in einem zweidimensionalen Gitter. I. Ionenstrom nach einem depolarisierenden Sprung im Membranpotential.Z. Naturforsch. 23b:181.

    Google Scholar 

  • Adelman, W. J., Senft, J. P. 1968. Dynamic asymmetries in the squid axon membrane.J. Gen. Physiol. 51:102S.

    Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Shaw, T. I. 1961. Replacement of the protoplasm of a giant nerve fibre with artificial solutions.Nature 190:885.

    Google Scholar 

  • Blumenthal, R., Changeux, J. P., Lefever, R. 1970. Une théorie de l'excitation électrique des membranes biologiques.Compt. Rend. Acad. Sci., Paris 270D:389.

    Google Scholar 

  • Carnay, L., Barry, W. H. 1969. Turbidity, birefingence and fluorescence changes in skeletal muscle coincident with the action potential.Science 165:608.

    Google Scholar 

  • Changeux, J. P. 1961. The feedback control mechanism of biosyntheticl-threonine deaminase byl-isoleucine.Cold Spring Harbor Symp. Quant. Biol. 26:313.

    Google Scholar 

  • — 1966. Responses of acetylcholinesterase fromTorpedo marmorata to salts and curarizing drugs.Mol. Pharmacol. 2:369.

    Google Scholar 

  • — 1969. Remarks on the symmetry and cooperative properties of biological membranes.In: Nobel Symp. No. 11, Symmetry and Function of Biological Systems at the Macromolecular Level. A. Engström and B. Strandberg, editors. p. 235. John Wiley, New York.

    Google Scholar 

  • Changeux, J. P., Blumenthal, R., Kasai, M., Podleski, T. 1970. Conformational transitions in the course of membrane excitation.In: Ciba Foundation Symposium, Molecular Properties of Drug Receptors. (in press)

  • —, Podleski, T. R. 1968. On the excitability and cooperativity of the electroplax membrane.Proc. Nat. Acad. Sci. 59:944.

    Google Scholar 

  • —, Rubin, M. M. 1968. Allosteric interactions in aspartate transcarbamylase. III. Interpretations of experimental data in terms of the model of Monod, Wyman and Changeux.Biochemistry 7:553.

    Google Scholar 

  • —, Thiéry, J. 1968. On the excitability and cooperativity of biological membranes.In: Regulatory Functions of Biological Membranes. J. Jarnefelt, editor. BBA Library, Vol. 11. Elsevier, Amsterdam.

    Google Scholar 

  • ——, Tung, Y., Kittel, C. 1967. On the cooperativity of biological membranes.Proc. Nat. Acad. Sci. 57:335.

    Google Scholar 

  • Cohen, L. B., Keynes, R. D., Hille, B. 1968. Light scattering and birefringence changes during activity.Nature 218:438.

    Google Scholar 

  • Cole, K. S. 1955. Ions, potentials and the nerve impulse.In: Electrochemistry in Biology and Medicine. T. Shedlovsky, editor. p. 121. John Wiley, New York.

    Google Scholar 

  • — Moore, J. W. 1960. Potassium ion current in the squid giant axon: Dynamic characteristic.Biophys. J. 1:1.

    Google Scholar 

  • Dodge, F. A., Frankenhaeuser, B. 1959. Sodium currents in the myelinated nerve fibre ofXenopus laevis investigated with the voltage clamp technique.J. Physiol. 148:188.

    Google Scholar 

  • Erlanger, J., Gasser, H. S. 1937. Electrical signs of nervous activity. University of Pennsylvania Press, Philadelphia.

    Google Scholar 

  • Gerhart, J. C., Pardee, A. B. 1962. The enzymology of control by feedback inhibition.J. Biol. Chem. 237:891.

    Google Scholar 

  • Gordon, R. 1968. Steady-state properties of Ising lattice membranes.J. Chem. Phys. 49:570.

    Google Scholar 

  • Grundfest, H. 1966. Heterogeneity of excitable membranes: Electrophysiological and pharmalogical evidence and some consequence.Ann. N.Y. Acad. Sci. 137:901.

    Google Scholar 

  • Hill, T. L. 1956. Statistical Mechanics. McGraw-Hill, New York.

    Google Scholar 

  • — 1967. Electric fields and the cooperativity of biological membranes.Proc. Nat. Acad. Sci. 58:111.

    Google Scholar 

  • Hill, T. L., Kedem, O. Studies in irreversible thermodynamics. III. Models for steady state and active transport across membranes.J. Theoret. Biol. 10:339.

  • Hille, B. 1968. Pharmacological modification of the sodium channels of frog nerve.J. Gen. Physiol. 51:199.

    Google Scholar 

  • Hodgkin, A. L. 1964. The Conduction of the Nervous Impulse. Liverpool University Press, Liverpool.

    Google Scholar 

  • — Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 117:500.

    Google Scholar 

  • Katchalsky, A., Spangler, R. 1968. Dynamics of membrane processes.Quart. Rev. Biophys. 1:127.

    Google Scholar 

  • Koshland, D. E. 1963. The role of flexibility in enzyme action.Cold Spring Harbor Symp. Quant. Biol. 28:473.

    Google Scholar 

  • Lapicque, L. 1909. Definition expérimentale de l'excitabilité.Compt. Rend. Soc. Biol. 67:280.

    Google Scholar 

  • Lefever, R. 1968. Dissipative structures in chemical systems.J. Chem. Phys. 49:4977.

    Google Scholar 

  • — Nicolis, G., Prigogine, I. 1967. On the occurrence of oscillations around the steady state in systems of chemical reactions far from equilibrium.J. Chem. Phys. 47:1045.

    Google Scholar 

  • Mauro, A. 1962. Space charge regions in fixed charge membranes and the associated property of capacitance.Biophys. J. 2:179.

    Google Scholar 

  • Monod, J., Changeux, J. P., Jacob, J. 1963. Allosteric proteins and cellular control systems.J. Mol. Biol. 6:306.

    Google Scholar 

  • —, Jacob, F. 1961. General conclusions: Teleonomic mechanisms in cellular metabolism, growth and differentiation.Cold Spring Harbor Symp. Quant. Biol. 26:389.

    Google Scholar 

  • —, Wyman, J., Changeux, J. P. 1965. On the nature of allosteric transitions: A plausible model.J. Mol. Biol. 12:88.

    Google Scholar 

  • Mueller, P., Rudin, D. O. 1968. Resting and action potentials in experimental bimolecular lipid membranes.J. Theoret. Biol. 18:222.

    Google Scholar 

  • Mullins, L. J. 1956. The structure of nerve cell membranes.In: Molecular Structure and Functional Activity of Nerve Cells. p. 123. American Institute of Biological Sciences, Washington, D.C.

    Google Scholar 

  • Nachmansohn, D. 1959. Chemical and Molecular Basis of Nerve Activity. Academic Press, New York.

    Google Scholar 

  • Narahashi, T., Moore, J. W. 1968. Neuroactive agents and membrane conductance.J. Gen. Physiol. 51:93S.

    Google Scholar 

  • Podleski, T. R., Changeux, J. P. 1970. On the excitability and cooperativity of the electroplax membrane.In: Fundamental Concepts of Drug-Receptor Interactions, Proc. 3rd Ann. Buffalo-Milan Symp. on Mol. Pharmacol. August 28th, 1968. F. Danielli, J. F. Moran and D. J. Triggle, editors. 93. New York Academic Press.

    Google Scholar 

  • Prigogine, I. 1967. Introduction to Thermodynamics of Irreversible Processes. Interscience Publ., New York.

    Google Scholar 

  • — 1969a. Structure, Dissipation and Life.In: Theoretical Physics and Biology. M. Marois editor. North Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Prigogine, I. 1969b. Dissipative structures in biological systems. Report at the 2nd Intern. Conf. on Theoret. Phys. & Biol. Institut de la Vie, Versailles, July, 1969. To be published by North Holland, Amsterdam.

    Google Scholar 

  • —, Lefever, R. 1968. Symmetry breaking instabilities in dissipative systems II.J. Chem. Phys. 48:1695.

    Google Scholar 

  • —— Goldbeter, A., Herschkowitz-Kaufman, M. 1969. Symmetry breaking instabilities in biological systems.Nature 223:913.

    Google Scholar 

  • — Nicolis, G. 1967. On symmetry breaking instabilities in dissipative systems.J. Chem. Phys. 46:3542.

    Google Scholar 

  • Strässler, S., Kittel, C. 1965. Degeneracy and the order of the phase transformation in the molecular field approximation.Phys. Rev. 139:A758.

    Google Scholar 

  • Tasaki, I. 1968. Nerve Excitation: A Macromolecular Approach p. 201. C. Thomas, Springfield, Ill.

    Google Scholar 

  • — Carnay, L., Sandlin, R., Watanabe, A. 1969. Fluorescence changes during conduction in nerves stained with acridine orange.Science 163:683.

    Google Scholar 

  • — Watanabe, A., Sandlin, R., Carnay, L. 1968. Changes in fluorescence, turbidity and birefringence associated with nerve excitation.Proc. Nat. Acad. Sci. 61:883.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumenthal, R., Changeux, JP. & Lefever, R. Membrane excitability and dissipative instabilities. J. Membrain Biol. 2, 351–374 (1970). https://doi.org/10.1007/BF01869870

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869870

Keywords

Navigation