Skip to main content
Log in

Lipoprotein oxidation and its significance for atherosclerosis: A mathematical approach

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic disease which involves the build up of cholesterol and fatty deposits within the arterial wall. This results in the narrowing of the vessel lumen, which eventually restricts blood flow to vital organs such as the heart and lungs. These events may culminate in a heart attack or stroke, the commonest causes of death in the U.K. population. In this paper we study the early stages of atherosclerosis which include the build up of cholesterol within subendothelial cells to form what is known as a fatty streak, the earliest identifiable evidence of atherosclerosis. The deposition of cholesterol is believed to be a consequence of oxidation of circulating cholesterol-rich lipoproteins, in particular low density lipoproteins (LDLs). Via a mathematical model we investigate this process of oxidation within the context of an in vitro framework. We first recreate existing experimental results and then extend the model to investigate phenomenon not studied by current experimental protocols. We find that the model displays hysteresis which reveals some interesting insights into possible in vivo events. Mathematical analysis of this behaviour predicts that vitamin E supplementation is not as beneficial as high density lipoproteins (HDLs) and vitamin C. Furthermore, the scavenging of oxidants by HDL can provide an important first line of defence against LDL oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bjornheden, T., A. Babiy, G. Bondjers and O. Wiklund (1996). Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system. Atherosclerosis 123, 43–56.

    Article  Google Scholar 

  • Bonnefont-Rousselot, D., P. Therond, J. Beaudeux, J. Peynet, A. Legrand and J. Delattre (1999). High density lipoproteins (HDL) and the oxidative hypothesis of atherosclerosis. Clin. Chem. Lab. Med. 37, 939–948.

    Article  Google Scholar 

  • Bowry, V. W., K. K. Stanley and R. Stocker (1992). High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc. Natl. Acad. Sci. USA 89, 10316–10320.

    Google Scholar 

  • Bowry, V. W. and R. Stocker (1993). Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J. Am. Chem. Soc. 115, 6029–6044.

    Article  Google Scholar 

  • Bowry, V. W. and K. U. Ingold (1999). The unexpected role of vitamin E (α-tocopherol) in the peroxidation of human low-density lipoprotein. Acc. Chem. Res. 32, 27–34.

    Article  Google Scholar 

  • Cox, D. A. and M. L. Cohen (1996). Effects of oxidised low-density lipoprotein on vascular contraction and relaxation: clinical and pharmacological implications in atherosclerosis. Pharmacol. Rev. 48, 3–19.

    Google Scholar 

  • Davies, M. J. and N. Woolf (1990). Atherosclerosis in Ischaemic Heart Disease. Volume 1: The Mechanisms, London: Science Press.

    Google Scholar 

  • Doba, T., G. W. Burton and K. U. Ingold (1985). Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim. Biophys. Acta 835, 298–303.

    Google Scholar 

  • Doedel, E. J., H. B. Keller and J. P. Kernevez (1991). Numerical analysis and control of bifurcation problems: (I) bifurcation in finite dimensions. Int. J. bifurcation Chaos 1, 493–520.

    Article  MathSciNet  MATH  Google Scholar 

  • Esterbauer, H., J. Gebicki, H. Puhl and G. Jurgens (1992). Review Article: The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med. 13, 341–390.

    Article  Google Scholar 

  • Francis, G. A. (2000). High density lipoprotein oxidation: in vivo susceptibility and potential in vivo consequences. Biochim. Biophys. Acta 1483, 217–235.

    Google Scholar 

  • Frei, B., L. England and B. N. Ames (1989). Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA 86, 6377–6381.

    Article  Google Scholar 

  • Frei, B., R. Stocker and B. N. Ames (1988). Antioxidant defences and lipid peroxidation in human blood plasma. Proc. Natl. Acad. Sci. USA 85, 9748–9752.

    Article  Google Scholar 

  • Geigy Scientific Tables. 8th edn, Vol. 3, C. Lentner (Ed.), Basle: Ciba-geigy, pp. 115–125.

  • Goldstein, J. L., Y. K. Ho, S. K. Basu and M. S. Brown (1977). Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Natl. Acad. Sci. USA 76, 333–337.

    Article  Google Scholar 

  • Hamilton, C. A. (1997). Low-density lipoprotein and oxidised low-density lipoprotein: their role in the development of atherosclerosis. Pharmacol. Ther. 74, 55–72.

    Article  Google Scholar 

  • Hazel, A. L. and T. J. Pedley (1998). Alteration of mean wall shear stress near an oscillating stagnation point. J. Biomech. Eng.-Trans. ASME 120, 227–237.

    Google Scholar 

  • Ingold, K. U., V. W. Bowry, R. Stocker and C. Walling (1993). Autoxidation of lipids and antioxidation by α-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognised consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein. Proc. Natl. Acad. Sci. USA 90, 45–49.

    Article  Google Scholar 

  • Jialal, I., G. L. Vega and S. M. Grundy (1990). Physiologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein. Atherosclerosis 82, 185–191.

    Article  Google Scholar 

  • Keaney, J. F. Jr, D. I. Simon and J. E. Freedman (1999). Vitamin E and vascular homeostasis: implications for atherosclerosis. FASEB J. 13, 965–976.

    Google Scholar 

  • Neumann, S. J., S. A. Berceli, E. M. Sevick, A. M. Lincoff, V. S. Warty, A. M. Brant, I. M. Herman and H. S. Borovetz (1990). Experimental determination and mathematical model of the transient incorporation of cholesterol in the arterial wall. Bull. Math. Biol. 52, 711–732.

    Article  MATH  Google Scholar 

  • Neuzil, J., S. R. Thomas and R. Stocker (1997). Requirement for, promotion, or inhibition by α-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation. Free Radic. Biol. Med. 22, 57–71.

    Article  Google Scholar 

  • Nielsen, L. B. (1996). Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis. Atherosclerosis 123, 1–15.

    Article  Google Scholar 

  • Nielsen, L. B. (1999). Atheogenecity of lipoprotein(a) and oxidised low density lipoprotein: insight from in vivo studies of arterial wall influx, degradation and efflux. Atherosclerosis 143, 229–243.

    Article  Google Scholar 

  • Niki, E., T. Saito, A. Kawakami and Y. Kamiya (1984). Inhibition of oxidation of methyl linoleate in solution by vitamin E. J. Biol. Chem. 259, 4177–4182.

    Google Scholar 

  • Nyyssonen, K., H. E. Poulsen, M. Hayn, P. Agerbo, E. Porkkalasarataho and J. Kaikkonen et al. (1997). Effect of supplementation of smoking men with plain or slow release ascorbic acid on lipoprotein oxidation. Eur. J. Clin. Nutr. 51, 154–163.

    Article  Google Scholar 

  • Packer, J. E., T. F. Slater and R. L. Willson (1979). Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278, 737–738.

    Article  Google Scholar 

  • Panda, K., R. Chattopadhyay, D. Chattopadhyay and I. B. Catterjee (2000). Vitamin C prevents cigarette smoke-induced oxidative damage in vivo. Free Rad. Biol. Med. 29, 115–124.

    Article  Google Scholar 

  • Parthasarathy, S., J. Barnett and L. G. Fong (1990). High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim. Biophys. Acta 1044, 275–283.

    Google Scholar 

  • Rimm, E. B. and M. J. Stampfer (1997). The role of antioxidants in preventive cardiology. Curr. Opin. Cardiol. 12, 188–194.

    Google Scholar 

  • Saidel, G. M., E. D. Morris and G. M. Chisolm (1987). Transport of macromolecules in arterial wall in vivo: a mathematical model and analytical solutions. Bull. Math. Biol. 49, 153–169.

    Article  MATH  Google Scholar 

  • Schwenke, D. C. and T. E. Carew (1989). Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II Selective retention of LDL vs. Selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9, 908–918.

    Google Scholar 

  • Stanbro, W. D. (2000a). Modelling the interaction of peroxynitrite with low-density lipoproteins. I Plasma levels of peroxynitrite. J. Theor. Biol. 205, 457–464.

    Article  Google Scholar 

  • Stanbro, W. D. (2000b). Modelling the interaction of peroxynitrite with low-density lipoproteins. II Reaction/Diffusion model of peroxynitrite in low-density lipoprotein particles. J. Theor. Biol. 205, 465–471.

    Article  Google Scholar 

  • Stanbro, W. D. (2000c). Modelling the interaction of peroxynitrite with low-density lipoproteins. III The role of antioxidants. J. Theor. Biol. 205, 473–482.

    Article  Google Scholar 

  • Steinberg, D., S. Parthasarathy, T. E. Carew, J. C. Khoo and J. L. Witztum (1989). Beyond cholesterol: Modifications of low-density lipoprotein than increase its atherogenicity. New Eng. J. Med. 320, 915–924.

    Article  Google Scholar 

  • Stocker, R. (1999). The ambivalence of vitamin E in atherogenesis. Trends Biochem. Sci. 24, 219–223.

    Article  Google Scholar 

  • Tall, A. R. (1998). An overview of reverse cholesterol transport. Euro. Heart J. 19(Suppl. A), A31–A35.

    Google Scholar 

  • Tall, A. R. (1990). Plasma high density lipoproteins: metabolism and relationship to atherogenesis. J. Clin. Invest. 86, 379–384.

    Article  Google Scholar 

  • The HOPE Study Investigators. (2000). Vitamin E supplementation and cardiovascular events in high-risk patients. N. Engl. J. Med. 342, 154–160.

    Article  Google Scholar 

  • Tozer, E. C. and T. E. Carew (1997). Residence time of low-density lipoprotein in the normal and atherosclerotic rabbit aorta. Circ. Res. 80, 208–218.

    Google Scholar 

  • Upston, J. M., A. C. Terentis and R. Stocker (1999). Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. FASEB J. 13, 977–994.

    Google Scholar 

  • Watanabe, A., N. Noguchi, M. Takahashi and E. Niki (1999). Rate constants for hydrogen atom abstraction by α-tocopherol radical from lipid, hydroperoxide and ascorbic acid. Chem. Lett. 7, 613–614.

    Article  Google Scholar 

  • Wen, Y., S. Killalea, P. McGettigan and J. Feely (1996). Lipid peroxidation and antioxidant vitamins C and E in hypertensive patients. Irish J. Med. Sci. 165, 210–212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Cobbold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobbold, C.A., Sherratt, J.A. & Maxwell, S.R.J. Lipoprotein oxidation and its significance for atherosclerosis: A mathematical approach. Bull. Math. Biol. 64, 65–95 (2002). https://doi.org/10.1006/bulm.2001.0267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0267

Keywords

Navigation