Skip to main content
Log in

Mixed encounters, limited perception and optimal foraging

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This article demonstrates how perceptual constraints of predators and the possibility that predators encounter prey both sequentially (one prey type at a time) and simultaneously (two or more prey types at a time) may influence the predator attack decisions, diet composition and functional response of a behavioural predator-prey system. Individuals of a predator species are assumed to forage optimally on two prey types and to have exact knowledge of prey population numbers (or densities) only in a neighbourhood of their actual spatial location. The system characteristics are inspected by means of a discrete-time, discrete-space, individual-based model of the one-predator-two-prey interaction. Model predictions are compared with ones that have been obtained by assuming only sequential encounters of predators with prey and/or omniscient predators aware of prey population densities in the whole environment. It is shown that the zero-one prey choice rule, optimal for sequential encounters and omniscient predators, shifts to abruptly changing partial preferences for both prey types in the case of omniscient predators faced with both types of prey encounters. The latter, in turn, become gradually changing partial preferences when predator omniscience is considered only local.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, M. V. (1986). Patch choice under perceptual constraints: A cause for departures from an ideal free distribution. Behav. Ecol. Sociobiol. 19, 409–415.

    Article  Google Scholar 

  • Barkan, C. and M. Withiam (1989). Profitability, rate maximization, and reward delay: A test of the simultaneous-encounter model of prey choice with Parus atricapillus. Am. Nat. 134, 254–272.

    Article  Google Scholar 

  • Bélisle, C. and J. Cresswell (1997). The effects of a limited memory capacity on foraging behavior. Theor. Pop. Biol. 52, 78–90.

    Article  Google Scholar 

  • Berec, L. and V. Křivan A mechanistic model for partial preferences (accepted). Theor. Pop. Biol.

  • Charnov, E. L. (1976a). Optimal foraging: Attack strategy of a mantid. Am. Nat. 110, 141–151.

    Article  Google Scholar 

  • Charnov, E. L. (1976b). Optimal foraging, the marginal value theorem. Theor. Pop. Biol. 9, 129–136.

    Article  MATH  Google Scholar 

  • Davies, N. (1977). Prey selection and the search strategy of the spotted flycatcher (Muscicapa striata): A field study of optimal foraging. Anim. Behav. 25, 1016–1033.

    Article  Google Scholar 

  • de Roos, A. M., E. McCauley and W. G. Wilson (1991). Mobility versus density-limited predator-prey dynamics on different scales. Proc. R. Soc. Lond. B 246, 117–122.

    Google Scholar 

  • Engen, S. and N. C. Stenseth (1984a). An ecological paradox: A food type may become more rare in the diet as a consequence of being more abundant. Am. Nat. 124, 352–359.

    Article  Google Scholar 

  • Engen, S. and N. C. Stenseth (1984b). A general version of optimal foraging theory: The effect of simultaneous encounters. Theor. Pop. Biol. 26, 192–204.

    Article  MathSciNet  Google Scholar 

  • Fryxell, J. M. and P. Lundberg (1994). Diet choice and predator-prey dynamics. Evol. Ecol. 8, 407–421.

    Article  Google Scholar 

  • Gleeson, S. K. and D. S. Wilson (1986). Equilibrium diet: Optimal foraging and prey coexistence. Oikos 46, 139–144.

    Google Scholar 

  • Gray, R. and M. Kennedy (1994). Perceptual constraints on optimal foraging: A reason for departures from the ideal free distribution? Anim. Behav. 47, 469–471.

    Article  Google Scholar 

  • Hirvonen, H., E. Ranta, H. Rita and N. Peuhkuri (1999). Significance of memory properties in prey choice decisions. Ecol. Model. 115, 177–189.

    Article  Google Scholar 

  • Houston, A., J. Krebs and J. Erichsen (1980). Optimal prey choice and discrimination time in the great tit (Parus major L.). Behav. Ecol. Sociobiol. 6, 169–175.

    Article  Google Scholar 

  • Hughes, R. (1979). Optimal diets under the energy maximization premise: The effects of recognition time and learning. Am. Nat. 113, 209–221.

    Article  Google Scholar 

  • Krebs, J. R., J. T. Erichsen, M. I. Webber and E. L. Charnov (1977). Optimal prey selection in the great tit (Parus major). Anim. Behav. 25, 30–38.

    Article  Google Scholar 

  • Křivan, V. (1996). Optimal foraging and predator-prey dynamics. Theor. Pop. Biol. 49, 265–290.

    Article  Google Scholar 

  • Křivan, V. and A. Sikder (1999). Optimal foraging and predator-prey dynamics, II. Theor. Popul. Biol. 55, 111–126.

    Article  Google Scholar 

  • MacArthur, R. H. and E. R. Pianka (1966). On optimal use of a patchy environment. Am. Nat. 100, 603–609.

    Article  Google Scholar 

  • Mangel, M. and B. Roitberg (1989). Dynamic information and host acceptance by a tephritid fruit fly. Ecol. Entomol. 14, 181–189.

    Google Scholar 

  • McCauley, E., W. G. Wilson and A. M. de Roos (1993). Dynamics of age-structured and spatially structured predator-prey interactions: Individual-based models and population-level formulations. Am. Nat. 142, 412–442.

    Article  Google Scholar 

  • McNamara, J. M. and A. I. Houston (1987). Partial preferences and foraging. Anim. Behav. 35, 1084–1099.

    Article  Google Scholar 

  • Mitchell, W. (1989). Informational constraints on optimally foraging hummingbirds. Oikos 55, 145–154.

    Google Scholar 

  • Mittelbach, G. (1981). Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology 62, 1370–1386.

    Article  Google Scholar 

  • Murdoch, W. W., E. McCauley, R. M. Nisbet, W. S. C. Gurney and A. M. de Roos (1992). Individual-based models: combining testability and generality, in Individual-Based Models and Approaches in Ecology—Populations, Communities and Ecosystems, D. L. De Angelis and L. J. Gross (Eds), New York: Chapman & Hall, pp. 18–35.

    Google Scholar 

  • Pulliam, H. R. (1974). On the theory of optimal diets. Am. Nat. 108, 57–74.

    Article  Google Scholar 

  • Pulliam, H. R. (1975). Diet optimization with nutrient constraints. Am. Nat. 109, 765–768.

    Article  Google Scholar 

  • Rechten, C., M. Avery and A. Stevens (1983). Optimal prey selection: Why do great tits show partial preferences? Anim. Behav. 31, 576–584.

    Article  Google Scholar 

  • Rice, W. R. (1983). Sensory modality: An example of its effect on optimal foraging behavior. Ecology 64, 403–406.

    Article  Google Scholar 

  • Schmidt, K. (1998). The consequences of partially directed search effort. Evol. Ecol. 12, 263–277.

    Article  Google Scholar 

  • Schmitz, O. J. (1997). Commemorating 30 years of optimal foraging theory. Evol. Ecol. 11, 631–632.

    Article  Google Scholar 

  • Schoener, T. W. (1971). Theory of feeding strategies. Ann. Rev. Ecol. Syst. 11, 369–404.

    Article  Google Scholar 

  • Spencer, H. G., M. Kennedy and R. D. Gray (1996). Perceptual constraints on optimal foraging: The effects of variation among foragers. Evol. Ecol. 10, 331–339.

    Article  Google Scholar 

  • Stephens, D. W. and J. R. Krebs (1986). Foraging Theory, Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Stephens, D. W., J. F. Lynch, A. E. Sorensen and C. Gordon (1986). Preference and profitability: Theory and experiment. Am. Nat. 127, 533–553.

    Article  Google Scholar 

  • Stillman, R. A., J. D. Goss-Custard and R. W. G. Caldow (1997). Modelling interference from basic foraging behaviour. J. Anim. Ecol. 66, 692–703.

    Google Scholar 

  • Waddington, K. and L. Holden (1979). Optimal foraging: On flower selection by bees. Am. Nat. 114, 179–196.

    Article  Google Scholar 

  • Werner, E. E. and D. J. Hall (1974). Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55, 1042–1052.

    Article  Google Scholar 

  • Wilson, W. G. (1998). Resolving discrepancies between deterministic population models and individual-based simulations. Am. Nat. 151, 116–134.

    Article  Google Scholar 

  • Wilson, W. G., A. M. de Roos and E. McCauley (1993). Spatial instabilities within the diffusive Lotka-Volterra system: Individual-based simulation results. Theor. Popul. Biol. 43, 91–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berec, L. Mixed encounters, limited perception and optimal foraging. Bull. Math. Biol. 62, 849–868 (2000). https://doi.org/10.1006/bulm.2000.0179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0179

Keywords

Navigation