Skip to main content
Log in

Diet choice and predator—prey dynamics

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

We compare the dynamics of predator-prey systems with specialist predators or adaptive generalist predators that base diet choice on energy-maximizing criteria. Adaptive predator behaviour leads to functional responses that are influenced by the relative abundance of alternate prey. This results in the per capita predation risk being positively density-dependent near points of diet expansion. For a small set of parameter values, systems with adaptive predators can be locally stable whereas systems with specialist predators would be unstable. This occurs mainly when alternate prey have low enough profitability that predators cannot sustain themselves indefinitely when feeding on alternate prey. Local stability of systems with adaptive predator behaviour is inversely related to the goodness of fit to optimal diet choice criteria. Hence, typical patterns of partial prey preference are more stabilizing than perfect optimal diet selection. Locally stable systems with adaptive predators are often globally unstable, converging on limit cycles for many initial population densities. The small range of parameter combinations and initial population densities leading to stable equilibria suggest that adaptive diet selection is unlikely to be a ubiquitous stabilizing factor in trophic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P. (1982) Functional responses of optimal foragers.Am. Nat. 120, 382–90.

    Google Scholar 

  • Abrams, P. (1987a) The functional responses of adaptive consumers of two resources.Theor. Pop. Biol. 32, 262–88.

    Google Scholar 

  • Abrams, P. (1987b) Indirect interactions between species that share a predator: varieties of indirect effects. InPredation: direct and indirect impacts on aquatic communities (W.C. Kerfoot and A. Sih, eds), pp. 38–54. University of New England Press, Dartmouth.

    Google Scholar 

  • Abrams, P. (1990) The effects of adaptive behavior on the type-2 functional response.Ecology 71, 877–85.

    Google Scholar 

  • Abrams, P. (1993) Effects of adaptive predatory and anti-predator behaviour in a two-prey-one-predator system.Evol. Ecol. 7, 312–26.

    Google Scholar 

  • Abramsky, Z., Rosenzweig, M. L. and Pinshow, B. (1991) The shape of a gerbil isocline: an experimental field study using principles of optimal habitat selection.Ecology 72, 328–40.

    Google Scholar 

  • Akre, B.G. and Johnson, D.M. (1979) Switching and sigmoid functional response curves by damselfly naiads with alternative prey available.J. Anim. Ecol. 48, 703–20.

    Google Scholar 

  • Charnov, E.L. (1976) Optimal foraging: attack strategy of a mantid.Am. Nat. 110, 141–51.

    Google Scholar 

  • Chesson, P.L. and Murdoch, W.W. (1986) Aggregation of risk: relationships among host—parasitoid models.Am. Nat. 127, 696–715.

    Google Scholar 

  • Colton, T.F. (1987) Extending functional response models to include a second prey type: an experimental test.Ecology 68, 900–12.

    Google Scholar 

  • Comins, H.N. and Hassell, M.P. (1976) Predation in multi-prey communities,J. Theor. Biol. 62, 93–114.

    PubMed  Google Scholar 

  • Comins, H.N. and Hassell, M.P. (1979) The dynamics of optimally foraging predators and parasitoids.J. Anim. Ecol. 48, 335–51.

    Google Scholar 

  • Fryxell, J.M. and Doucet, C.M. (1993) Diet choice and the functional response of beavers.Ecology 74, 1297–306.

    Google Scholar 

  • Fryxell, J.M. and Lundberg, P. (1993) Optimal patch use and metapopulation dynamics.Evol. Ecol. 7, 379–93.

    Google Scholar 

  • Fryxell, J.M., Vamosi, S.M., Walton, R.A. and Doucet, C.M. (1994) Retention time and the functional response of beavers.Oikos (in press).

  • Gleeson, S.K. and Wilson, D.S. (1986) Equilibrium diet: optimal foraging and prey coexistence.Oikos 46, 139–44.

    Google Scholar 

  • Hassell, M.P. and Pacala, S.W. (1990) Heterogeneity and the dynamics of host-parasitoid interactions.Phil. Trans. R. Soc. Lond. B. 330, 203–20.

    Google Scholar 

  • Hastings, A. and Powell, T. (1991) Chaos in a three-species food chain.Ecology 72, 896–903.

    Google Scholar 

  • Holt, R.D. (1983) Optimal foraging and the form of the predator isocline.Am. Nat. 122, 521–41.

    Google Scholar 

  • Kareiva, P. (1990) Population dynamics in spatially-complex environments: theory and data.Phil. Trans. R. Soc. Lond. B330, 175–90.

    Google Scholar 

  • Krebs, J.R. and McCleery, R.H. (1984) Optimization in behavioural ecology. InBehavioural ecology (J.R. Krebs and N.B. Davies, eds), pp. 91–121, Blackwell, Oxford.

    Google Scholar 

  • MacArthur, R.H. and Pianka, E.R. (1966) On optimal use of a patchy environment.Am. Nat. 100, 603–9.

    Google Scholar 

  • McNair, J.N. (1986) The effects of refuges on predator—prey interactions: a reconsideration.Theor. Pop. Biol. 29, 38–63.

    Google Scholar 

  • McNair, J.N. (1987) A reconciliation of simple and complex models of age-dependent predation.Theor. Pop. Biol. 32, 383–92.

    Google Scholar 

  • Mangel, M. and Roitberg, B.D. (1992) Behavioral stabilization of host—parasite population dynamics.Theor. Pop. Biol. 42, 308–20.

    Google Scholar 

  • May, R.M. (1972) Limit cycles in predator—prey communities.Science 177, 900–2.

    Google Scholar 

  • May, R.M. (1974)Stability and Complexity in Model Ecosystems Princeton University Press, Princeton.

    Google Scholar 

  • May, R.M. (1978) Host—parasitoid systems in patchy environments: a phenomenological model.J. Anim. Ecol. 47, 833–43.

    Google Scholar 

  • Mitchell, W.A. and Brown, J. S. (1990) Density-dependent harvest rates by optimal foragers.Oikos 57, 180–90.

    Google Scholar 

  • Murdoch, W.W. (1973) The functional response of predators.J. Appl. Ecol. 14, 335–41.

    Google Scholar 

  • Murdoch, W.W., and Oaten, A. (1975) Predation and population stability.Adv. Ecol. Res. 9, 2–131.

    Google Scholar 

  • Murdoch, W.W., Nisbet, R.M., Blythe, S.P., Gurney, W.S., and Reeve, J.D. (1987) An invulnerable age class and stability in delay-differential parasitoid—host models.Am. Nat. 129, 263–82.

    Google Scholar 

  • Pacala, S.W., Hassell, M.P. and May, R.M. (1990) Host—parasitoid associations in patchy environments.Nature 344, 150–3.

    PubMed  Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1988)Numerical Recipes in C. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Pulliam, H.R. (1980) Do chipping sparrows forage optimally?Ardea 68, 75–82.

    Google Scholar 

  • Pulliam, H.R. (1988) Sources, sinks, and population regulation.Am. Nat. 132, 652–61.

    Google Scholar 

  • Pulliam, H.R. and Danielson, B.J. (1991) Sources, sinks, and habitat selection: a landscape perspective on population dynamics.Am. Nat. 137, S50–66.

    Google Scholar 

  • Ranta, E. and Nuutinen, V. (1985) Foraging by the smooth newt (Triturus vulgaris) on zooplankton: functional responses and diet choice.J. Anim. Ecol. 54, 275–93.

    Google Scholar 

  • Rosenzweig, M.L. (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological time.Science 171, 385–7.

    PubMed  Google Scholar 

  • Rosenzweig, M.L. (1977) Aspects of biological exploitation.Q. Rev. Biol. 52, 371–80.

    Google Scholar 

  • Rosenzweig, M.L. (1981) A theory of habitat selection.Ecology 62, 327–35.

    Google Scholar 

  • Rosenzweig, M.L. (1986) Hummingbird isolegs in an experimental system.Behav. Ecol. Sociobiol. 19, 313–22.

    Google Scholar 

  • Rosenzweig, M.L. (1991) Habitat selection and population interactions: the search for mechanism.Am. Nat. 137, S5–28.

    Google Scholar 

  • Rosenzweig, M.L. and MacArthur, R.H. (1963) Graphical representation and stability conditions of predator—prey interactions.Am. Nat. 97, 209–23.

    Google Scholar 

  • Sih, A. (1984) Optimal behavior and density-dependent predation.Am. Nat. 123, 314–26.

    Google Scholar 

  • Sih, A. (1987) Prey refuges and predator—prey stability.Theor. Pop. Biol. 31, 1–12.

    Google Scholar 

  • Stephens, D.W. (1985) How important are partial preferences?Anim. Behav. 33, 667–9.

    Google Scholar 

  • Stephens, D.W. and Krebs, J.R. (1986)Foraging Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Tanner, J.T. (1975) The stability and the intrinsic growth rates of prey and predator populations.Ecology 56, 855–67.

    Google Scholar 

  • Tansky, M. (1978) Switching effect in predator—prey system.J. Theor. Biol. 70, 263–71.

    PubMed  Google Scholar 

  • Taylor, A.D. (1988) Large-scale spatial structure and population dynamics in arthropod predator—prey systems.Ann. Zool. Fenn. 25, 63–74.

    Google Scholar 

  • Yodzis, P. (1989)Introduction to Theoretical Ecology. Harper and Row, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fryxell, J.M., Lundberg, P. Diet choice and predator—prey dynamics. Evol Ecol 8, 407–421 (1994). https://doi.org/10.1007/BF01238191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01238191

Keywords

Navigation