Skip to main content
Log in

Zooplankton mortality and the dynamical behaviour of plankton population models

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate the dynamical behaviour of a simple plankton population model, which explicitly simulates the concentrations of nutrient, phytoplankton and zooplankton in the oceanic mixed layer. The model consists of three coupled ordinary differential equations. We use analytical and numerical techniques, focusing on the existence and nature of steady states and unforced oscillations (limit cycles) of the system. The oscillations arise from Hopf bifurcations, which are traced as each parameter in the model is varied across a realistic range. The resulting bifurcation diagrams are compared with those from our previouswork, where zooplankton mortality was simulated by a quadratic function—here we use a linear function, to represent alternative ecological assumptions. Oscillations occur across broader ranges of parameters for the linear mortality function than for the quadratic one, although the two sets of bifurcation diagrams show similar qualitative characteristics. The choice of zooplankton mortality function, or closure term, is an area of current interest in the modelling community, and we relate our results to simulations of other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. A. and J. H. Steele (1966). Shipboard experiments on the feeding of Calanus finmarchicus (Gunnerus), in Some Contemporary Studies in Marine Science, H. Barnes (Ed), London: George Allen and Unwin, pp. 19–35.

    Google Scholar 

  • Armstrong, R. A. (1994). Grazing limitation and nutrient limitation in marine ecosystems: Steady state solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39, 597–608.

    Article  Google Scholar 

  • Caswell, H. and M. G. Neubert (1998). Chaos and closure terms in plankton food chain models. J. Plankton Res. 20, 1837–1845.

    Google Scholar 

  • Collie, J. S. and P. D. Spencer (1994). Modeling predator-prey dynamics in a fluctuating environment. Can. J. Fish. Aquat. Sci. 51, 2665–2672.

    Article  Google Scholar 

  • Denman, K., E. Hofmann and H. Marchant (1996). Marine biotic responses to environmental change and feedbacks to climate, in Climate Change 1995-The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton, L. G. Meira-Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, (Eds), Cambridge: Cambridge University Press, pp. 482–516.

    Google Scholar 

  • Doedel, E., X. Wang and T. Fairgrieve (1994). AUTO: Software for continuation and bifurcation problems in ordinary differential equations, Applied Mathematics Report, CA: California Institute of Technology.

    Google Scholar 

  • Edwards, A. M. (1997). A rational dynamical-systems approach to plankton population modelling, PhD thesis, University of Leeds, U.K.

    Google Scholar 

  • Edwards, A. M. and J. Brindley (1996). Oscillatory behaviour in a three-component plankton population model. Dyn. Stab. Syst. 11, 347–370.

    MATH  Google Scholar 

  • Evans, G. T. and J. S. Parslow (1985). A model of annual plankton cycles. Biol. Oceanogr. 3, 327–347.

    Google Scholar 

  • Fasham, M. J. R. (1993). Modelling the marine biota, in The Global Carbon Cycle, M. Heimann (Ed), Berlin: Springer-Verlag, pp. 457–504.

    Google Scholar 

  • Fasham, M. J. R., H. W. Ducklow and S. M. McKelvie (1990). A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48, 591–639.

    Google Scholar 

  • Fasham, M. J. R., J. L. Sarmiento, R. D. Slater, H. W. Ducklow and R. Williams (1993). Ecosystem behavior at Bermuda Station “S” and Ocean Weather Station “India”: a general circulation model and observational analysis. Glob. Biogeochem. Cyc. 7, 379–415.

    Google Scholar 

  • Frost, B. W. (1987). Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar. Ecol. Prog. Ser. 39, 49–68.

    Google Scholar 

  • Glendinning, P. (1994). Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. Cambridge Texts in Applied Mathematics, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Glendinning, P. and C. Laing (1996). A homoclinic hierarchy. Phys. Lett. A 211, 155–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Glendinning, P. and C. Sparrow (1984). Local and global behavior near homoclinic orbits. J. Stat. Phys. 35, 645–696.

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer, J. and P. Holmes (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 of Applied Mathematical Sciences, New York: Springer-Verlag.

    Google Scholar 

  • Hastings, A. and T. Powell (1991). Chaos in a three-species food chain. Ecology 72, 896–903.

    Article  Google Scholar 

  • Henderson, E. W. and J. H. Steele (1995). Comparing models and observations of shelf plankton. J. Plankton Res. 17, 1679–1692.

    Google Scholar 

  • Hofmann, E. E. and J. W. Ambler (1988). Plankton dynamics on the outer southeastern U.S. continental shelf. Part II: A time-dependent biological model. J. Mar. Res. 46, 883–917.

    Article  Google Scholar 

  • Khibnik, A. I., Y. A. Kuznetsov, V. V. Levitin and E. V. Nikolaev (1992). Interactive LOCal BIFurcation analyzer. Computer Algebra Netherlands.

  • Khibnik, A. I., Y. A. Kuznetsov, V. V. Levitin and E. V. Nikolaev (1993). Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. Physica D 62, 360–371.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, Y. A. (1995). Elements of Applied Bifurcation Theory, Vol. 112 of Applied Mathematical Sciences. New York: Springer-Verlag.

    Google Scholar 

  • McCauley, E. and W. W. Murdoch (1987). Cyclic and stable populations: plankton as paradigm. Am. Nat. 129, 97–121.

    Article  Google Scholar 

  • McGillicuddy, D. J., J. J. McCarthy and A. R. Robinson (1995). Coupled physical and biological modeling of the spring bloom in the North Atlantic (I): model formulation and one dimensional bloom process. Deep-Sea Res. I 42, 1313–1357.

    Article  Google Scholar 

  • Mullin, T. (1993). A multiple bifurcation point as an organizing centre for chaos, in The Nature of Chaos, T. Mullin (Ed), Oxford: Oxford University Press, pp. 51–68.

    Google Scholar 

  • Nybakken, J. W. (1982). Marine Biology: An Ecological Approach. New York: Harper and Row.

    Google Scholar 

  • Platt, T. and S. Sathyendranath (1993). Estimators of primary production for interpretation of remotely sensed data on ocean color. J. Geophys. Res. 98, 14561–14576.

    Google Scholar 

  • Platt, T., S. Sathyendranath and P. Ravindran (1990). Primary production by phytoplankton: analytic solutions for daily rates per unit area of water surface. Proc. R. Soc. Lond., Ser. B, 241, 101–111.

    Google Scholar 

  • Ryabchenko, V. A., M. J. R. Fasham, B. A. Kagan and E. E. Popova (1997). What causes short-term oscillations in ecosystem models of the ocean mixed layer? J. Mar. Syst. 13, 33–50.

    Article  Google Scholar 

  • Steele, J. H. (1962). Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7, 137–150.

    Google Scholar 

  • Steele, J. H. and B. W. Frost (1977). The structure of plankton communities. Phil. Trans. R. Soc. Lond., Ser. B, 280, 485–534.

    Google Scholar 

  • Steele, J. H. and E. W. Henderson (1981). A simple plankton model. Am. Nat. 117, 676–691.

    Article  Google Scholar 

  • Steele, J. H. and E. W. Henderson (1992). The role of predation in plankton models. J. Plankton Res. 14, 157–172.

    Google Scholar 

  • Steele, J. H. and E. W. Henderson (1993). The significance of interannual variability, in Towards a Model of Ocean Biogeochemical Processes, G. T. Evans and M. J. R. Fasham, (Eds), Berlin: Springer-Verlag, pp. 237–260.

    Google Scholar 

  • Tait, R. V. (1981). Elements of Marine Ecology-Third Edition. London: Butterworths.

    Google Scholar 

  • Taylor, A. H. and I. Joint (1990). A steady-state analysis of the ‘microbial loop’ in stratified systems. Mar. Ecol. Prog. Ser. 59, 1–17.

    Google Scholar 

  • Thompson, J. M. T. and H. B. Stewart (1986). Nonlinear Dynamics and Chaos, Chichester: John Wiley and Sons.

    MATH  Google Scholar 

  • Thurman, H. V. (1997). Introductory Oceanography, 8th edition, Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Toggweiler, J. R. (1990). Modeling workshop offers first look at new simulation of Equatorial Pacific. U.S. JGOFS News 2, 1 and 11.

    Google Scholar 

  • Truscott, J. E. and J. Brindley (1994). Equilibria, stability and excitability in a general class of plankton population models. Phil. Trans. R. Soc. Lond., Ser. A, 347, 703–718.

    MATH  Google Scholar 

  • Wiggins, S. (1988). Global Bifurcations and Chaos: Analytical Methods, Vol. 73 of Applied Mathematical Sciences. New York: Springer-Verlag.

    Google Scholar 

  • Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos, Vol. 2 of Texts in Applied Mathematics, New York: Springer-Verlag.

    Google Scholar 

  • Williams, R. (1988). Spatial heterogeneity and niche differentiation in oceanic zooplankton. In G. A. Boxshall and H. K. Schimke, (Eds), Biology of Copepods. Hydrobiologia 167/168, 151–159.

  • Wroblewski, J. S. (1989). A model of the spring bloom in the North Atlantic and its impact on ocean optics. Limnol. Oceanogr. 34, 1563–1571.

    Article  Google Scholar 

  • Yool, A. (1998). The dynamics of open-ocean plankton ecosystem models, PhD thesis, University of Warwick, U.K.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, A.M., Brindley, J. Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol. 61, 303–339 (1999). https://doi.org/10.1006/bulm.1998.0082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1998.0082

Keywords

Navigation