Skip to main content
Log in

The Role of Mixotrophy in Southern Ocean Ecosystems

The Sensitivity of Model Dynamics to the Magnitude and Form of Mixotroph Interactions Between Plankton

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

We investigate the influence of mixotrophy on the dynamical properties of a six-population model of a three–trophic level Southern Ocean ecosystem. We find that including mixotrophic interactions between the lowest trophic level populations can significantly influence the dynamics of the highest trophic level populations, and in extreme cases lead to extinctions. Significantly, not only is the strength of the mixotrophic interaction important, it matters how it is included in the model, as a specialist or generalist grazer. We note in particular that the generalist formulation is inappropriate for “green” mixotrophs that fuel the majority of their growth by photosynthesis. The model can have complicated dynamics when subject to large amplitude, regular forcing, suggesting the sea ice—salps link may be obfuscated by endogenous population oscillations. Further, we observe that constructing the model within the Conservative Normal framework allows insights into the bifurcation behaviour of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Atkinson, A., Siegel, V., Pakhomov, E., Rothery, P. (2004). Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432, 100–103.

    Article  CAS  Google Scholar 

  2. Bates, M.L., Bengtson Nash, S.M., Hawker, D.W., Norbury, J., Stark, J.S., Cropp, R.A. (2015). Construction of a trophically complex near-shore Antarctic food web model using the Conservative-Normal framework with structural coexistence. Journal of Marine Systems, 145, 1–14.

    Article  Google Scholar 

  3. Boyd, I.L. (2002). Estimating food consumption of marine predators: Antarctic fur seals and macaroni penguins. Journal of Applied Ecology, 39, 103–119.

    Article  Google Scholar 

  4. Clarke, A., & Tyler, P.A. (2008). Adult antarctic krill feeding at abyssal depths. Current Biology, 18, 282–285.

    Article  CAS  Google Scholar 

  5. Cropp, R.A., Bengtson Nash, S.M., Hawker, D. (2014). A model to resolve the dynamics of organochlorine pharmacokinetics in migrating humpback whales. Environmental Toxicology and Chemistry, 33(7), 1638–1649.

    Article  CAS  Google Scholar 

  6. Cropp, R.A., & Norbury, J. (2015). Population interactions in ecology a Rule-Based approach to modeling ecosystems in a Mass-Conserving framework. SIAM Review, 57(3), 437–465.

    Article  Google Scholar 

  7. Cropp, R.A., Moroz, I.M., destabilisation, J. Norbury. (2017). Sequential boundary eigenvalue (seBEDes): An expert method for parameter screening and estimation in complex ecosystem models. Environmental Modelling and Software, 90, 167–181.

    Article  Google Scholar 

  8. Cropp, R.A., Moroz, I.M., Norbury, J. (2017). The role of grazer predation strategies in the dynamics of consumer-resource based ecological models. Journal of Sea Research, 125, 34–46.

    Article  Google Scholar 

  9. Cropp, R.A., & Norbury, J. (2009). Simple predator-prey interactions control dynamics in a plankton food web model. Ecological Modelling, 20, 1552–1565.

    Article  Google Scholar 

  10. Cropp, R.A., & Norbury, J. (2012). The mechanisms of coexistence and competitive exclusion in complex plankton ecosystem models. Ecosystems, 15, 200–212.

    Article  Google Scholar 

  11. Cropp, R.A., & Norbury, J. (2015). Mixotrophy: the missing link in consumer-resource-based ecologies. Theoretical Ecology, 8, 245–260.

    Article  Google Scholar 

  12. Crane, K.W., & Grover, J.P. (2010). Coexistence of mixotrophs, autotrophs, and heterotrophs in planktonic microbial communities. Journal of Theoretical Biology, 262(3), 517–527.

    Article  Google Scholar 

  13. Droop, M.R. (1968). Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. Journal of the Marine Biological Association UK, 48, 689–733.

    Article  CAS  Google Scholar 

  14. Franks, P. (2002). NPZ Models of Plankton Dynamics: Their construction, coupling to physics, and application. Journal of Oceanography, 58, 379–387.

    Article  Google Scholar 

  15. Franks, P. (2002). Planktonic ecosystem models: perplexing parameterizations and a failure to fail. Journal of Plankton Research, 31, 1299–1306.

    Article  Google Scholar 

  16. Flynn, K.J. (2003). Modelling multi-nutrient interactions in phytoplankton, balancing simplicity and realism. Progress in Oceanography, 56, 249–279.

    Article  Google Scholar 

  17. Flynn, K.J., & Mitra, A. (2009). Building the “perfect beast”: modelling mixotrophic plankton. Journal of Plankton Research, 31(9), 965–992.

    Article  CAS  Google Scholar 

  18. Flynn, K.J., Stoecker, D.K., Mitra, A., Raven, J.A., Glibert, P.M., Hansen, P.J., Graneli, E., Burkholder, J.M. (2013). Misuse of the phytoplankton - zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. Journal of Plankton Research, 35, 3–11.

    Article  Google Scholar 

  19. Gentleman, W., Leising, A., Frost, B., Strom, S., Murray, J.D. (2003). Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep Sea Research Part II: Topical Studies in Oceanography, 50, 2847–2875.

    Article  CAS  Google Scholar 

  20. Grant, S.M., Hill, S.L., Trathan, P.N., Murphy, E.J. (2013). Ecosystem services of the Southern Ocean: trade-offs in decision-making. Antarctic Science, 25(5), 603–617.

    Article  Google Scholar 

  21. Hadjiavgousti, D., & Ichtiaroglou, S. (2006). Allee Effect in Population Dynamics Existence of Breather-like Behavior and Control of Chaos through Dispersal. I. J. Bifurcation and Chaos, 16, 2001–2012.

    Article  Google Scholar 

  22. Hill, S.L., Murphy, E.J., Reid, K., Trathan, P.N., Constable, A. (2006). Modelling Southern Ocean ecosystems: krill, the food web, and the impacts of harvesting. Biological Reviews, 81, 581–608.

    Article  CAS  Google Scholar 

  23. Holling, C.S. (1959). Some characteristics of simple types of predation and parasitism. Canadian Entomologist, 91, 385–398.

    Article  Google Scholar 

  24. Ichii, T., & Kato, H. (1991). Food and daily food consumption of southern minke whales in the Antarctic. Polar Biology, 11, 479–487.

    Article  Google Scholar 

  25. Ivlev, V.S. (1961). Experimental Ecology of the Feeding of Fishes. New Haven: Yale University Press.

    Google Scholar 

  26. Jost, C., Lawrence, C.A., Campolongo, F., van de Bund, W., Hill, S., DeAngelis, D.L. (2004). The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model. Theoretical Population Biology, 66, 37–51.

    Article  Google Scholar 

  27. Koen-Alonso, M. (2007). A process-oriented approach to the multi-species functional response. In Rooney, N (Ed.) From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems, (Vol. 1 pp. 1–36). Netherlands: Springer.

  28. Kot, M. (2001). Elements of Mathematical Ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  29. Lockyer, C. (1981). Growth and energy budgets of large baleen whales from the Southern Hemisphere. Mammals in the Seas, 3, 379–487. FAO, Rome.

    Google Scholar 

  30. Loeb, V., Siegel, V., Holm-Hansen, O., Hewitt, R., Fraserk, W., Trivelpiece, W., Trivelpiece, S. (1997). Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature, 387, 897–900.

    Article  CAS  Google Scholar 

  31. Lotka, A.J. (1925). Elements of Physical Biology. Baltimore: Wilkins and Kilkins.

    Google Scholar 

  32. May, R.M., Beddington, J.R., Clark, C.W., Holt, S.J., Laws, R.M. (1979). Management of multispecies fisheries. Science, 205, 267–277.

    Article  CAS  Google Scholar 

  33. May, R.M. (1981). Theoretical Ecology Principles and Applications. Princeton, Oxford: Blackwell Science Inc.

    Google Scholar 

  34. Michaelis, L., & Menten, M.L. (1913). Die Kinetik der Invertinwirkung. Biochemische Zeitschrift, 49, 333–369.

    CAS  Google Scholar 

  35. Mitra, A., Castellani, C., Gentleman, W., Jonasdottir, S.H., Flynn, K., Bode, A., Halsband, C., Kuhn, P., Licandro, P., Agersted, M.D., Calbet, A., Lindeque, P.K., Koppelmann, R., Moller, E.F., Gislason, A., Nielsen, T.G., John, M. S. t. (2014). Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Progress in Oceanography, 129, 176–199.

    Article  Google Scholar 

  36. Mitra, A., Flynn, K.J., Burkholder, J.M., Berge, T., Calbet, A., Raven, J.A., Graneli, E., Glibert, P.M., Hansen, P.J., Stoecker, D.K., Thingstad, F., Tillmann, U., Vage, S., Wilken, S., Zubkov, M.V. (2014). The role of mixotrophic protists in the biological carbon pump. Biogeosciences, 11, 995–1005.

    Article  CAS  Google Scholar 

  37. Mitra, A., Flynn, K.J., Tillmann, U., Raven, J.A., Caron, D., Stoecker, D.K., Not, F., Hansen, P.J., Hallegraeff, G., Sanders, R., Wilken, S., McManus, G., Johnson, M., Pitta, P., Vage, S., Berge, T., Calbet, A., Thingstad, F., Jeong, H.J., Burkholder, J.A., Glibert, P.M., Graneli, E., Lundgren, V. (2016). Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: Incorporation of diverse mixotrophic strategies. Protist, 167(2), 106–120.

    Article  CAS  Google Scholar 

  38. Moeller, H.V., Peltomaa, E., Johnson, M.D., Neubert, M.G. (2016). Acquired phototrophy stabilises coexistence and shapes intrinsic dynamics of an intraguild predator and its prey. Ecology Letters, 19(4), 393–402.

    Article  Google Scholar 

  39. Moroz, I.M., Cropp, R.A., Norbury, J. (2016). Chaos in plankton models Foraging strategy and seasonal forcing. Ecological Modelling, 332, 103–111.

    Article  Google Scholar 

  40. Morozov, A., & Petrovskii, S. (2013). Feeding on multiple sources towards a universal parameterization of the functional response of a generalist predator allowing for switching. PLOS One, 8(9), e74586: 1–8.

    Article  CAS  Google Scholar 

  41. Murphy, E.J., Cavanagh, R.D., Hofmann, E.E., Hill, S.L., Constable, A., Costa, D.P., Pinkerton, M.H., Johnston, N.M., Trathan, P.N., Klinck, J.M., Wolf-Gladrow, D.A., Daly, K.L., Maury, O., Doney, S.C. (2012). Developing integrated models of Southern Ocean food webs Including ecological complexity, accounting for uncertainty and the importance of scale. Progress in Oceanography, 102, 74–92.

    Article  Google Scholar 

  42. Pastor, J. (2008). Mathematical Ecology of Populations and Ecosystems. Chichester: Wiley-Blackwell.

    Google Scholar 

  43. Porter, K. (1973). Selective grazing and differential digestion of algae by zooplankton. Nature, 244, 179–180.

    Article  Google Scholar 

  44. Sailley, S., Vogt, M., Doney, S.C., Aita, M.N., Bopp, L., Buitenhuis, E.T., Hashioka, T., Lima, I., Le Quere, C., Yamanaka, Y. (2013). Comparing food web structures and dynamics across a suite of global marine ecosystem models. Ecological Modelling, 261-262, 43–57.

    Article  Google Scholar 

  45. Scheidat, M., Bornemann, H., Burkhardt, E., Flores, H., Friedlaender, A., Kock, K.H., Lehnert, L., van Franeker, J., Williams, R. (2008). Antarctic sea ice habitat and minke whales. In: Annual Science Conference in Halifax, 22-26 September September, Halifax, Canada.

  46. Smith, E.L. (1936). Photosynthesis in relation to light and carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 22, 504–511.

    Article  CAS  Google Scholar 

  47. Smout, S., Asseburg, C., Matthiopoulos, J., Fernandez, C., Redpath, S., Thirgood, S., Harwood, J. (2010). The functional response of a generalist predator. PLoS ONE, 5(5), 1–7.

    Article  CAS  Google Scholar 

  48. Steinberg, D.K., Ruck, K.E., Gleiber, M.R., Garzio, L.M., Cope, J.S., Bernard, K.S., Stammerjohn, S.E., Schofield, O.M.E., Quetin, L.B., Ross, R.M. (2015). Long-term (1993-2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep-SeaResearch I, 101, 54–70.

    Article  Google Scholar 

  49. Stitch, H.-B., & Lampert, W. (1984). Growth and reproduction of migrating and non-migrating Daphnia species under simulated food and temperature conditions of diurnal vertical migration. Oecologia, 61, 192–196.

    Article  Google Scholar 

  50. Vitousek, P.M., & Matson, P.A. (2012). Nutrient cycling and biogeochemistry. In Levin, S. (Ed.) The Princeton Guide to Ecology (pp. 330–339). New Jersey: Princeton University Press.

  51. Volterra, V. (1926). Variations and fluctuations of the numbers of individuals in animal species living together. In: Reprinted in 1931 in Chapman, R.N. Animal Ecology. McGraw Hill, New York.

  52. Wang, S., Maltrud, M., Elliott, S., Cameron-Smith, P., Jonko, A. (2018). Influence of dimethyl sulfide on the carbon cycle and biological production. Biogeochemistry, 138, 49–68.

    Article  CAS  Google Scholar 

  53. Ward, B.A., Dutkiewicz, S., Barton, A.D., Follows, M.J. (2011). Biophysical aspects of resource acquisition and competition in algal mixotrophs. The American Naturalist, 178(1), 98–112.

    Article  Google Scholar 

  54. Wilken, S., Huisman, J., Naus-Wiezer, S., Van Donk, E. (2013). Mixotrophic organisms become more heterotrophic with rising temperature. Ecology Letters, 16, 225–233.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editors and two anonymous reviewers for their thoughtful and constructive contributions. JN, IMM, and RC wish to thank Dr Keith Gillow for the cheerful and consummately competent provision of computing support at the Mathematical Institute, University of Oxford over a number of years. RC wishes to also thank the Mathematical Institute, University of Oxford; Lincoln College, Oxford; and St Hilda’s College, Oxford for support in January 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Cropp.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norbury, J., Moroz, I.M. & Cropp, R. The Role of Mixotrophy in Southern Ocean Ecosystems. Environ Model Assess 24, 421–435 (2019). https://doi.org/10.1007/s10666-019-09670-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-019-09670-0

Keywords

Navigation