Skip to main content

From classical chirality to topologically chiral catenands and knots

  • Chapter
  • First Online:
Supramolecular Chemistry I — Directed Synthesis and Molecular Recognition

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 165))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References and Notes

  1. Le Bel JA (1874) Bull Soc Chim Fr 22: 337

    Google Scholar 

  2. van't Hoff JH (1874) Arch Neer 9: 445

    Google Scholar 

  3. van't Hoff JH (1875) Bull Soc Chim Fr 23: 295

    Google Scholar 

  4. Prelog V (1976) Science 193: 17

    Article  CAS  Google Scholar 

  5. Mislow K, Bickart P (1976/77) Isr J Chem 15: 1

    Google Scholar 

  6. Dugundji J, Kopp R, Marquarding D, Ugi I (1978) Top Curr Chem 75: 165

    Article  CAS  Google Scholar 

  7. Farina M, Morandi C (1974) Tetrahedron 30: 1819

    Article  CAS  Google Scholar 

  8. Eliel EL (1976/77) Isr J Chem 15: 7

    Google Scholar 

  9. Mislow K, Bolstad R (1955) J Am Chem Soc 77: 6712

    Article  CAS  Google Scholar 

  10. O'Loane JK (1980) Chem Rev 80: 41

    Article  Google Scholar 

  11. Naumann K, Zon G, Mislow K (1969) J Am Chem Soc 91: 7012

    Article  CAS  Google Scholar 

  12. Meisenheimer J, Lichtenstadt L (1911) Ber Dtsch Chem Ges 44: 356

    Article  CAS  Google Scholar 

  13. Korpium O, Mislow K (1967) J Am Chem Soc 89: 4784

    Article  Google Scholar 

  14. Sokolov VI, Reutov OA (1965) Russ Chem Rev 34: 1

    Article  Google Scholar 

  15. Pope WJ, Peachey SJ (1899) J Chem Soc 1899: 1127

    Google Scholar 

  16. Pope WJ, Peachey SJ (1900) J Chem Soc 1900: 1072

    Google Scholar 

  17. Böeseken J, Mijs JA (1925) Recl Trav Chim P Bas 44: 758

    Google Scholar 

  18. Sommer LH, Frye CL, Parker GA, Michael KW (1964) J Am Chem Soc 86: 3271

    Article  CAS  Google Scholar 

  19. Brook AG, Peddle GJD (1963) J Am Chem Soc 85: 1869

    Article  CAS  Google Scholar 

  20. Horner L, Ernst M (1970) Chem Ber 103: 318

    Article  CAS  Google Scholar 

  21. Brunner H (1975) Top Curr Chem 56: 67

    CAS  Google Scholar 

  22. Moise C, Leblanc JC, Tirouflet J (1975) J Am Chem Soc 97: 6272

    Article  CAS  Google Scholar 

  23. Simonneaux G, Meyer A, Jaouen G (1975) J Chem Soc, Chem Commun 1975: 69

    Article  Google Scholar 

  24. Brunner H (1969) Angew Chem 81: 395; Angew Chem Int Ed Engl 8: 382

    Article  Google Scholar 

  25. Brunner H (1969) Z Anorg Allg Chem 368: 120

    Article  CAS  Google Scholar 

  26. Flood TC, DiSanti FJ, Miles DL (1975) J Chem Soc, Chem Commun 1975: 336

    Article  Google Scholar 

  27. Mani M, Vahrenkamp H (1986) Chem Ber 119: 3639

    Article  CAS  Google Scholar 

  28. Werner A (1911) Ber Dtsch Chem Ges 44: 1887

    Article  CAS  Google Scholar 

  29. Kauffman GB (1974) Coord Chem Rev 12: 105

    Article  CAS  Google Scholar 

  30. Haller G, Schlögl K (1967) Monatsh Chem 98: 2044

    Article  CAS  Google Scholar 

  31. Schlögl K (1967) Top Stereochem 1: 39

    Article  Google Scholar 

  32. Meurer K, Vögtle F, Mannschreck A, Stühler G, Puff H, Roloff A (1984) J Org Chem 49: 3484

    Article  Google Scholar 

  33. Nakazaki M, Yamamoto K, Ito M, Tanaka S (1977) J Org Chem 42: 3468

    Article  CAS  Google Scholar 

  34. Oki M (1983) Top Stereochem 14: 1

    Article  CAS  Google Scholar 

  35. Pummerer R, Rieche A (1926) Chem Ber 59: 2159

    Google Scholar 

  36. Akimoto H, Shioiri T, Iitaka Y, Yamada S (1968) Tetrahedron Lett 1968: 97

    Article  Google Scholar 

  37. Cope AC, Ganellin CR, Johnson HW Jr (1962) J Am Chem Soc 84: 3191

    Article  CAS  Google Scholar 

  38. Martin RH (1974) Angew Chem 86: 727; Angew Chem Int Ed Engl 13: 649

    Article  CAS  Google Scholar 

  39. Laarhoven WH, Prinsen WJC (1984) Top Curr Chem 125: 63

    CAS  Google Scholar 

  40. Deuschel-Cornioley C, Stoeckli-Evans H, von Zelewsky A (1990) J Chem Soc, Chem Commun 1990: 121

    Article  Google Scholar 

  41. March J (1985) In: Advanced Organic Chemistry Third Edition. Wiley-Interscience p 91

    Google Scholar 

  42. Spielmann W, de Meijere A (1976) Angew Chem 88: 446; Angew Chem Int Ed Engl 15: 429

    Article  CAS  Google Scholar 

  43. Collet A, Gottarelli G (1981) J Am Chem Soc 103: 204

    Article  CAS  Google Scholar 

  44. Hayes KS, Nagumo M, Blount JF, Mislow K (1980) J Am Chem Soc 102: 2773

    Article  CAS  Google Scholar 

  45. Marshall JA (1980) Acc Chem Res 13: 213

    Article  CAS  Google Scholar 

  46. Nakazaki M, Yamamoto K, Naemura K (1984) Top Curr Chem 125: 1

    CAS  Google Scholar 

  47. Mislow K, Glass MAW, Hopps HB, Simon E, Wahl GH Jr (1964) J Am Chem Soc 86: 1710

    Article  CAS  Google Scholar 

  48. Wittig G, Rümpler KD (1971) Liebigs Ann Chem 751: 1

    Article  CAS  Google Scholar 

  49. Adachi K, Naemura K, Nakazaki M (1968) Tetrahedron Lett 1968: 5467

    Article  Google Scholar 

  50. Haas G, Hulbert PB, Klyne W, Prelog V, Snatzke G (1971) Helv Chim Acta 54: 491

    Article  CAS  Google Scholar 

  51. Haas G, Prelog V (1969) Helv Chim Acta 52: 1202

    Article  CAS  Google Scholar 

  52. Longone DT, Reetz MT (1967) J Chem Soc, Chem Commun 1967: 46

    Google Scholar 

  53. Haenel M, Staab HA (1973) Chem Ber 106: 2203

    Article  CAS  Google Scholar 

  54. Underwood GR, Ramamoorthy B (1970) Tetrahedron Lett 1970: 4125

    Article  Google Scholar 

  55. Nakazaki M, Naemura K, Arashiba N (1978) J Org Chem 43: 689

    Article  CAS  Google Scholar 

  56. Nakazaki M, Naemura K, Chikamatsu H, Iwasaki M, Hashimoto M (1980) Chem Lett 1980: 1571

    Article  Google Scholar 

  57. Werner A (1912) Chem Ber 45: 433

    Article  CAS  Google Scholar 

  58. Nakazaki M, Naemura K, Hokura Y (1982) J Chem Soc, Chem Commun 1982: 1245

    Article  Google Scholar 

  59. Meurer KP, Vögtle F (1985) Top Curr Chem 127: 1

    CAS  Google Scholar 

  60. Garst JF (1990) J Chem Soc, Chem Commun 1990: 211

    Article  Google Scholar 

  61. Frisch HL, Wasserman E (1961) J Am Chem Soc 83: 3789

    Article  CAS  Google Scholar 

  62. Sokolov VI (1973) Russ Chem Rev (Engl Transl) 42: 452

    Article  Google Scholar 

  63. Walba DM (1983) In: King RB (ed) Chemical Applications of Topology and Graph Theory. Vol 28. Elsevier Science Publishers BV, Amsterdam, p 17

    Google Scholar 

  64. Walba DM (1985) Tetrahedron 41: 3161

    Article  CAS  Google Scholar 

  65. Walba DM (1987) In: King RB, Rouvray DH (eds) Graph Theory and Topology in Chemistry. Vol 51. Elsevier Science Publishers BV, Amsterdam, p 23

    Google Scholar 

  66. Simon J (1987) In: King RB, Rouvray DH (eds) Graph Theory and Topology in Chemistry. Vol 51. Elsevier Science Publishers BV, Amsterdam, p 43

    Google Scholar 

  67. Wilson RJ (1972) Introduction to graph theory. Oliver and Boyd, Edinburgh

    Google Scholar 

  68. Gutman I, Trinajstic N (1973) Top Curr Chem 42: 49

    CAS  Google Scholar 

  69. We believe it important to stress out that the expression “topological isomers” should never be used instead of “constitutional isomers”, since, as we will see later, the expression “topological stereoisomers” is used only for stereoisomers differing by extrinsic topology

    Google Scholar 

  70. A presentation of a graph G is any construction of the graph in a two-or three-dimensional space [54a]

    Google Scholar 

  71. Walba suggested that “isotopy” be replaced by the term “homeotopy”

    Google Scholar 

  72. A planar graph is one which is isomorphic [58b] to a plane graph. A plane graph is a graph drawn in the plane in such a way that two edges do not intersect geometrically except to a vertex at which they are both incident [54a]

    Google Scholar 

  73. Two graphs G1 and G2 are isomorphic if there is a one-one correspondence between the vertices of G1 and those of G2 with the property that the number of edges joining any two vertices of G1 is equal to the number of edges joining vertices of G2 [54a]

    Google Scholar 

  74. Ternansky RJ, Balogh DW, Paquette LA (1982) J Am Chem Soc 104: 4503

    Article  CAS  Google Scholar 

  75. A subgraph of a graph G is a graph, all of whose vertices belong to V(G) and all of whose edges belong to E(G) [54a]

    Google Scholar 

  76. A contraction of a graph G is a graph which results from G after a succession of edge-contractions. An edge-contraction is obtained by removing an edge e (with incident vertices v and w [62]) and identifying v and w in such a way that the resulting vertex is incident to those edges which were originally incident to v or w [54a]

    Google Scholar 

  77. A complete graph is a simple graph in which every pair of distinct vertices are adjacent. (Two vertices v and w of a graph G are said to be adjacent if there is an edge joining them; the vertices v and w are then said to be incident to such an edge) [54a]

    Google Scholar 

  78. Kuck D, Schuster A (1988) Angew Chem 100: 1222; Angew Chem Int Ed Engl 27: 1192

    Article  Google Scholar 

  79. Lewis J, Johnson BFG (1982) Pure Appl Chem 54: 97

    CAS  Google Scholar 

  80. Jackson PF, Johnson BFG, Lewis J, Nicholls JN, McPartlin M, Nelson WJH (1980) J Chem Soc, Chem Commun 1980: 564

    Article  Google Scholar 

  81. Bour JJ, v. d. Berg W, Schlebos PPJ, Kanters RPF, Schoondergang MFJ, Bosman WP, Smits JMM, Beurskens PT, Steggerda JJ, van der Sluis P (1990) Inorg Chem 29: 2971

    Article  CAS  Google Scholar 

  82. Creaser II, Geue RJ, Harrowfield J MacB, Herlt AJ, Sargeson AM, Snow MR, Springborg J (1982) J Am Chem Soc 104: 6016

    Article  CAS  Google Scholar 

  83. Barigelletti F, de Cola L, Balzani V, Belser P, von Zelewsky A, Vögtle F, Ebmeyer F, Grammenudi S (1989) J Am Chem Soc 111: 4662

    Article  CAS  Google Scholar 

  84. Momenteau M, Mispelter J, Loock B, Bisagni E (1983) J Chem Soc, Perkin Trans I 1983: 189

    Article  Google Scholar 

  85. Hegetschweiler K, Schmalle H, Streit HM, Schneider W (1990) Inorg Chem 29: 3625

    Article  CAS  Google Scholar 

  86. Okuno H (Y), Uoto K, Sasaki Y, Yonemitsu O, Tomohiro T (1987) J Chem Soc, Chem Commun 1987: 874

    Article  Google Scholar 

  87. The union G1UG2 is defined as the graph which vertex set is V1UV2 and edge set is E1UE2. A disconnected graph is a graph which can be expressed as the union of two graphs [54a]

    Google Scholar 

  88. A circuit graph is a connected graph which is regular of degree 2. (A graph in which every vertex set has the same degree is called a regular graph, the degree of a vertex being the number of edges incident to this vertex) [54a]

    Google Scholar 

  89. Dietrich-Buchecker CO, Sauvage JP (1989) Angew Chem 101: 192; Angew Chem Int Ed Engl 28: 189

    Article  CAS  Google Scholar 

  90. Simons J (1986) Topology 25: 229

    Article  Google Scholar 

  91. A graph can be coloured: vertices or edges can be drawn in different colours in order to be distinguished one from each other

    Google Scholar 

  92. In a chiral medium, enantiotopic protons become diastereotopic and thus their 1H-NMR signals are split (see ref. [87]). Therefore, a positive test with the Pirkle's reagent is the necessary but not sufficient condition for chirality

    Article  CAS  Google Scholar 

  93. McCreary MD, Lewis DW, Wernick DL, Whitesides GM (1973) J Am Chem Soc 96: 1038

    Article  Google Scholar 

  94. Pirkle WH, Sikkenga DL, Pavlin MS (1977) J Org Chem 42: 384

    Article  CAS  Google Scholar 

  95. Albano VG, Chini P, Martinengo S, Sansoni M, Strumolo D (1974) J Chem Soc, Chem Commun 1974: 299

    Article  Google Scholar 

  96. Hisatome M, Kawaziri Y, Yamakawa K, Iitaka Y (1979) Tetrahedron Lett 20: 1777

    Article  Google Scholar 

  97. Simmons III HE, Maggio JE (1981) Tetrahedron Lett 22: 287

    Article  CAS  Google Scholar 

  98. Paquette LA, Vazeux M (1981) Tetrahedron Lett 22: 291

    Article  CAS  Google Scholar 

  99. Otsubo T, Ogura F, Misumi S (1983) Tetrahedron Lett 24: 4851

    Article  CAS  Google Scholar 

  100. Otsubo T, Aso Y, Ogura F, Misumi S, Kawamoto A, Tanaka J (1989) Bull Chem Soc Jpn 62: 164

    Article  CAS  Google Scholar 

  101. Nakazaki M, Yamamoto K, Tanaka S, Kametani H (1977) J Org Chem 42: 287

    Article  CAS  Google Scholar 

  102. Nakazaki M (1984) Top Stereochem 15: 199

    Article  CAS  Google Scholar 

  103. Walba DM, Richards RM, Haltiwanger RC (1982) J Am Chem Soc 104: 3219

    Article  CAS  Google Scholar 

  104. Walba DM, Armstrong JD III, Perry AE, Richards RM, Homan TC, Haltiwanger RC (1986) Tetrahedron 42: 1883

    Article  CAS  Google Scholar 

  105. Mislow K, Raban M (1967) Top Stereochem 1: 1

    Article  CAS  Google Scholar 

  106. Eliel EL (1982) Top Curr Chem 105: 1

    CAS  Google Scholar 

  107. Walba DM, Simon J, Harary F (1988) Tetrahedron Lett 29: 731

    Article  CAS  Google Scholar 

  108. Schill G (1971) In: Catenanes, Rotaxanes and Knots. Academic Press, New York, pp 11–14

    Google Scholar 

  109. A digraph is a graph G where E(G) is a set of ordered pairs of edges [54a].

    Google Scholar 

  110. Prelog V, Gerlach H (1964) Helv Chim Acta 47: 2288

    Article  CAS  Google Scholar 

  111. Gerlach H, Owtschinnikow JA, Prelog V (1964) Helv Chim Acta 47: 2294

    Article  CAS  Google Scholar 

  112. Kubo H, Aida T, Inoue S, Okamoto Y (1988) J Chem Soc, Chem Commun 1988: 1015

    Article  Google Scholar 

  113. Mitchell DK, Sauvage JP (1988) Angew Chem 100: 985; Angew Chem Int Ed Engl 27: 930

    Article  CAS  Google Scholar 

  114. Dietrich-Buchecker CO, Sauvage JP, Kintzinger JP (1983) Tetrahedron Lett 24: 5094

    Google Scholar 

  115. Dietrich-Bucker CO, Sauvage JP (1983) Tetrahedron Lett 24: 5091

    Article  Google Scholar 

  116. Dietrich-Buchecker CO, Sauvage JP (1990) Tetrahedron 46: 503

    Article  CAS  Google Scholar 

  117. Dietrich-Buchecker CO, Sauvage JP, Kern JM (1984) J Am Chem Soc 106: 3043

    Article  CAS  Google Scholar 

  118. Dietrich-Buchecker CO, Sauvage JP (1987) Chem Rev 87: 795

    Article  CAS  Google Scholar 

  119. Sauvage JP (1990) Acc Chem Res 23: 319

    Article  CAS  Google Scholar 

  120. Dietrich-Buchecker CO, Guilhem J, Pascard C, Sauvage JP (1990) Angew Chem 102: 1202; Angew Chem Int Ed Engl 29: 1154

    Article  CAS  Google Scholar 

  121. McCasland GE, Proskow S (1955) J Am Chem Soc 77: 4688

    Article  CAS  Google Scholar 

  122. Dietrich-Buchecker CO, Marnot PA, Sauvage JP, Kirchhoff JR, McMillin DR (1983) J Chem Soc, Chem Commun 1983: 513

    Article  Google Scholar 

  123. Edel A, Marnot PA, Sauvage JP (1984) Nouv J Chim 8: 495

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Chambron, JC., Dietrich-Buchecker, C., Sauvage, JP. (1993). From classical chirality to topologically chiral catenands and knots. In: Supramolecular Chemistry I — Directed Synthesis and Molecular Recognition. Topics in Current Chemistry, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0111283

Download citation

  • DOI: https://doi.org/10.1007/BFb0111283

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56280-1

  • Online ISBN: 978-3-540-47504-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics