Skip to main content

Non linear hyperbolic fields and waves

  • Chapter
  • First Online:
Recent Mathematical Methods in Nonlinear Wave Propagation

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1640))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge University Press, Cambridge, New York (1st ed. 1990; 2nd revised ed. 1992).

    MATH  Google Scholar 

  2. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience Publ., New York, London, Sydney (1962).

    MATH  Google Scholar 

  3. A. Jeffrey and T. Taniuti, Non-linear Wave Propagation, with Applications to Physics and Magnetohydrodynamics, Academic Press, New York, London (1964).

    MATH  Google Scholar 

  4. A. Jeffrey, Quasilinear hyperbolic systems and waves, Pitman Publishing, London, San Francisco, Melbourne (1976).

    MATH  Google Scholar 

  5. A. Jeffrey, Lectures on nonlinear wave propagation, in Wave Propagation, Corso CIME, Bressanone, 1980, Ed. by G. Ferrarese, Liguori, Napoli (1982).

    Google Scholar 

  6. C. Dafermos, Hyperbolic systems of conservation laws, in Systems of nonlinear partial differential equations. Ed. by J. Ball. NATO ASI series, C, No 111, Reidel Publ. Co. (1983) pp. 25–70.

    Google Scholar 

  7. J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, New York, Heidelberg, Berlin (1983).

    Book  MATH  Google Scholar 

  8. D. Serre, Systèmes de lois de conservation, I & II, Diderot, Paris (1996).

    Google Scholar 

  9. B. Sévennec, Géométrie des systèmes hyperboliques de lois de conservation, Mémoire 56, Soc. Math. Fr. (1994).

    Google Scholar 

  10. P. D. Lax, The multiplicities of eigenvalues, Bull. Amer. Math. Soc., 6 (1982) p.213.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Friedland, J. W. Robbin and J. H. Sylvester, On the crossing rule, Comm. Pure Appl. Math., 37 (1984) p.19.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Hadamard, Leçons sur la propagation des ondes, Hermann, Paris (1903).

    MATH  Google Scholar 

  13. C. Reid, Courant in Göttingen and New York. The Story of an Improbable Mathematician, Springer-Verlag, New York (1976) p.279.

    MATH  Google Scholar 

  14. R. Courant and P. D. Lax, The propagation of discontinuities in wave motion, Proc. Natl. Acad. Sci. U.S., 42 (1956) pp.872–76.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Cattaneo, Elementi di teoria della propagazione ondosa. Lezioni raccolte da S. Pluchino. Quaderni dell’Unione Matematica Italiana 20, Pitagora Editrice, Bologna (1981).

    MATH  Google Scholar 

  16. A. Jeffrey, The development of jump discontinuities in nonlinear hyperbolic systems of equations in two independent variables, Arch. Ratl. Mech. Analys., 14 (1963) pp.27–37.

    MathSciNet  MATH  Google Scholar 

  17. G. Boillat and T. Ruggeri, On the evolution law of weak discontinuities for hyperbolic quasi-linear systems, Wave Motion, 1 (1979) pp.149–152.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. D. Lax, Asymptotic solutions of oscillatory initial value problem, Duke. Math. Journ., 24 (1957) pp.627–646.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Ludwig, Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math., 13 (1960) pp.473–508.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Choquet-Bruhat, Ondes asymptotiques pour un système d’équations aux dérivées partielles non linéaires, J. Maths. pure appl., 48 (1969) pp.117–158; Ondes Asymptotiques, in Wave Propagation, Corso CIME. Bressanone, 1980 (op. cit.) pp.99–165.

    MathSciNet  MATH  Google Scholar 

  21. A. M. Anile and A. Greco, Asymptotic waves and critical time in general relativistic magnetohydrodynamics, Ann. Inst. Henri Poincaré, XXIX (1978) p.257.

    MathSciNet  MATH  Google Scholar 

  22. J. K. Hunter and J. B. Keller, Weakly nonlinear high frequency waves, Comm. Pure Appl. Math., XXXVI (1983) pp.547–569.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Boillat, Ondes asymptotiques non linéaires, Ann. Mat. pura ed appl., CXI (1976) pp.31–44.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Serre, Oscillations non-linéaires hyperboliques de grande amplitude: DIM ≥2 in Nonlinear variational problems and partial differential equations. Proc. of the 3rd conf., Isola d’Elba, 1990. Ed. by A. Marino et al., Pitman Res. Notes Math., Ser.320 (1995) pp.245–294.

    Google Scholar 

  25. R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, Interscience Publ., New York (1948).

    MATH  Google Scholar 

  26. P. D. Lax, The initial value problem for nonlinear hyperbolic equations in two independent variables, Ann. Math. Studies, Princeton, 33 (1954) pp.211–29.

    MathSciNet  MATH  Google Scholar 

  27. P. D. Lax, Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math., 10 (1957) pp.537–566.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Boillat, Sur la croissance des ondes simples et l’instabilité de chocs caractéristiques des systèmes hyperboliques avec application à la discontinuité de contact d’un fluide, C. R. Acad. Sci. Paris, 284 A (1977) pp.1481–1484.

    MathSciNet  MATH  Google Scholar 

  29. G. Boillat, On nonlinear plane waves, in 8th Internat. Conf. on Waves and Stability in Continuous Media, Plaermo, 1995. Ed. by A.M. Greco and S. Rionero (to appear in a special issue of Rend. Circ. Mat. Palermo).

    Google Scholar 

  30. G. Velo and D. Zwanziger, Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential, Phys. Rev., 186 (1969) pp.1337–1341.

    Article  Google Scholar 

  31. G. Boillat, Exact plane wave solution of Born-Infeld electrodynamics, Lett. N. Cim., serie 2, 4 (1972) pp.274–276.

    Article  Google Scholar 

  32. G. Boillat, Covariant disturbances and exceptional waves, J. Math. Phys., 14 (1973) pp.973–976.

    Article  MATH  Google Scholar 

  33. H. C. Tze, Born duality and strings in hadrodynamics and electrodynamics, N. Cim., 22 A (1974) pp.507–526.

    Article  MathSciNet  Google Scholar 

  34. H. Freistühler, Linear degeneracy and shock waves, Math. Z., 207 (1991) pp.583–596.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Boillat, Chocs caractéristiques, C.R. Acad. Sci. Paris, 274 A (1972) pp.1018–1021.

    MathSciNet  MATH  Google Scholar 

  36. G. Boillat and A. Muracchini, Chocs caractéristiques de croisement, C.R. Acad. Sci. Paris, 310 I (1990) pp.229–232.

    MathSciNet  MATH  Google Scholar 

  37. G. Boillat, Le cône critique et le champ scalaire, C.R. Acad. Sci. Paris, 260 (1965) pp.2427–2429.

    MathSciNet  MATH  Google Scholar 

  38. W. Heisenberg and H. Euler, Zeitschrift für Physik, 98 (1936) p. 714.

    Article  Google Scholar 

  39. G. B. Witham, Linear and Nonlinear Waves, John Wiley & Sons, New York, London, Sydney, Toronto (1974).

    Google Scholar 

  40. Th. von Kármán, Compressibility effects in aerodynamics, J. Aeron. Sci., 8 (1941) pp. 337–356.

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Carafoli, High Speed Aerodynamics, Pergamon Press (1956).

    Google Scholar 

  42. Y. Choquet-Bruhat, Théorèmes d’existence globaux pour des fluides ultrarelativistes, C.R. Acad. Sci. Paris, 319 I (1994) pp. 1337–1342.

    MathSciNet  Google Scholar 

  43. T. Ruggeri, A. Muracchini and L. Seccia, Shock waves and second sound in a rigid heat conductor: a critical temperature for NaF and Bi, Phys. Rev. Lett., 64 (1990) p. 2640; Continuum approach to phonon gas and shape of second sound via shock waves theory, N. Cim., 16 D (1994) pp. 15–44.

    Article  Google Scholar 

  44. A. Donato and T. Ruggeri, Onde di discontinuità e condizioni di eccezionalità per materiali ferromagnetici, Rend. Accad. Naz. Lincei, Serie VIII, LIII (1972) pp. 289–294.

    Google Scholar 

  45. G. Boillat, La propagation des ondes, Gauthier-Villars, Paris.

    Google Scholar 

  46. T. Ruggeri, Sulla propagazione di onde elettromagnetiche di discontinuità in mezzi non lineari, Ist. Lombardo (Rend. Sc.) A 107 (1973) pp. 283–297.

    Google Scholar 

  47. T. Taniuti, On wave propagation in non-linear fields, Suppl. Progr. Theor. Phys., No9 (1959) pp. 69–128.

    Article  MATH  Google Scholar 

  48. M. Born, Proc. Roy. Soc. London, Ser. A, 143 (1933) p. 410.

    Article  Google Scholar 

  49. W. Heisenberg, Zs. f. Phys., 133 (1952) p. 79; 126 (1949) p. 519; 113 (1939) p. 61.

    Google Scholar 

  50. B. M. Barbishov and N. A. Chernikov, Solution of the two plane wave scattering problem in a nonlinear scalar field theory of the Born-Infeld type, Sov. Phys. J. E. T. P., 24 (1966) pp. 437–442.

    Google Scholar 

  51. I. Imai, Progr. Theor. Phys., 2 (1947) p. 97.

    Google Scholar 

  52. T. Taniuti, On the Heisenberg’s non-linear meson equation, Progr. Theor. Phys., 14 (1955) pp. 408–409.

    Article  MathSciNet  Google Scholar 

  53. A. Greco, On the exceptional waves in relativistic magnetohydrodynamics, Rend. Accad. Naz. Lincei, serie VIII, LII (1972) pp. 507–512.

    MathSciNet  MATH  Google Scholar 

  54. M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. London, A 144 (1934) pp. 425–451; M. Born, Structure atomique de la matière, Coll. U. Armand Colin, Paris (1971); Atomic Physics, Blackie and Son, Ltd., London.

    Article  MATH  Google Scholar 

  55. J. Plebański, Lectures on non-linear electrodynamics, given at the Niels Bohr Institute and NORDITA in 1968, NORDITA, Copenhagen (1970). I. Bialynicki-Birula, Nonlinear Electrodynamics: variations on a theme by Born and Infeld in Quantum Theory and Particles and Fields. B. Jancewicz and J. Lukierski eds. World Scientific, Singapore (1983).

    Google Scholar 

  56. J. Naas and H.L. Schmid, Mathematisches Wörterbuch mit Einbeziehung der theoretischen Physik, Akademie Verlag, Berlin und B.G. Teubner, Stuttgart (1961).

    Google Scholar 

  57. A. Einstein, H. Born and M. Born, Briefwechsel, 1916–1955, kommentiert von Max Born. Geleitwort von Bertrand Russell, Vorwort von Werner Heisenberg. Nymphenburger Verlagshandlung, München, 1969; H. and M. Born, Der Luxus des Gewissens, Ibid., 1969.

    MATH  Google Scholar 

  58. G. Boillat, Nonlinear electrodynamics. Lagrangians and equations of motion, J. Math. Phys., 11 (1970) pp. 941–951; Born-Infeld particle; small scale phenomena, Lett. N. Cim., 4 (1970) pp. 773–778; Exact plane-wave solution of Born-Infeld electrodynamics, Ibid., 4 (1972) pp. 274–276; Shock relations in nonlinear electrodynamics, Phys. Lett., 40 A (1972) pp. 9–10.

    Article  Google Scholar 

  59. A. Strumia, Einstein equations, relativistic strings and Born-Infeld electrodynamics, N. Cim., 110 B (1995) pp. 1497–1504.

    Article  MathSciNet  Google Scholar 

  60. J. H. Olsen and A. S. Shapiro, Large-amplitude unsteady flow in liquid-filled elastic tubes, J. Fluid Mech., 29 (1967) pp. 513–538.

    Article  Google Scholar 

  61. W. A. Green, The growth of plane discontinuities propagating into a homogeneously deformed elastic material, Arch. Ratl. Mech. Analys., 16 (1964) pp. 79–88.

    Article  MathSciNet  MATH  Google Scholar 

  62. N. H. Scott, Acceleration waves in incompressible elastic solids, Quart. J. Mec. Appl. Math., 29 (1976) pp. 259–310.

    MATH  Google Scholar 

  63. A. Jeffrey and M. Teymur, Formation of shock waves in hyperelastic solids, Acta Mech., 20 (1974) pp. 133–149.

    Article  MathSciNet  MATH  Google Scholar 

  64. L. Lustman, A note on nonbreaking waves in hyperelastic materials, Stud. Appl. Math., 63 (1980) pp. 147–154.

    Article  MathSciNet  MATH  Google Scholar 

  65. A. Donato, Legge di evoluzione delle discontinuità e determinazione di una classe di potenziali elastici compatibile con la propagazione di one eccezionali in un mezzo continuo sottoposto a particolari deformazioni finite, ZAMP, 28 (1977) pp. 1059–1066.

    Article  MATH  Google Scholar 

  66. G. Boillat and T. Ruggeri, Su alcune classi di potenziali termodinamici come conseguenza dell’esistenza di particolari onde di discontinuità nella meccanica dei continui con deformazioni finite, Rend. Sem. Mat. Univ. Padova, 51 (1974) pp. 293–304.

    MathSciNet  MATH  Google Scholar 

  67. G. Boillat and S. Pluchino, Onde eccezionali in mezzi iperelastici con deformazioni finite piane, ZAMP, 35 (1984) pp. 363–372.

    Article  MATH  Google Scholar 

  68. G. Grioli, On the thermodynamic potential for continuums with reversible transformations—some possible types, Meccanica, 1 (1966) pp. 15–20.

    Article  MATH  Google Scholar 

  69. C. Tolotti, Deformazioni elastiche finite: onde ordinarie di discontinuità e casi tipici di solidi elastici isotropi, Rend. Mat. Appl., serie V, 4 (1943) pp. 34–59.

    MathSciNet  MATH  Google Scholar 

  70. G. Boillat, Le champ scalaire de Monge-Ampère, Det Kgl. Norske Vid. Selsk. Forh., 41 (1968) pp. 78–81.

    MathSciNet  MATH  Google Scholar 

  71. G. Valiron, Cours d’analyse mathématique. Equations fonctionnelles. Applications, Masson, Paris (1950).

    Google Scholar 

  72. G. Boillat, Sur l’équation générale de Monge-Ampère à plusieurs variables, C. R. Acad. Sci. Paris, 313 I (1991) pp. 805–808.

    MathSciNet  MATH  Google Scholar 

  73. T. Ruggeri, Su una naturale estensione a tre variabili dell’equazione di Monge-Ampère, Accad. Naz. dei Lincei, LV (1973) pp. 445–449.

    MathSciNet  MATH  Google Scholar 

  74. A. Donato, U. Ramgulam and C. Rogers, The 3+1 dimensional Monge-Ampère equation in discontinuity wave theory: application of a reciprocal transformation, Meccanica, 27 (1992) pp. 257–262.

    Article  MATH  Google Scholar 

  75. G. Boillat, Sur l’équation générale de Monge-Ampère d’ordre supérieur, C. R. Acad. Sci. Paris, 315 I (1992) pp. 1211–1214.

    MathSciNet  MATH  Google Scholar 

  76. A. Donato and F. Oliveri, Linearization of completely exceptional second order hyperbolic conservative equations, Applicable Analys., 57 (1995) pp. 35–45.

    Article  MathSciNet  MATH  Google Scholar 

  77. G. Ruppeiner, Riemannian geometry of thermodynamics and critical phenomena, in Advances in Thermodynamics. Ed. by S. Sieniutycz & P. Salomon, Vol. 3, Taylor & Francis, New York (1990) pp. 129–159.

    Google Scholar 

  78. A. Donato and G. Valenti, Exceptionality criterion and linearization procedure for a third order nonlinear partial differential equation, J. Math. Analys. Appls., 186 (1994) pp. 375–382.

    Article  MathSciNet  MATH  Google Scholar 

  79. G. Boillat, Sur la forme générale du système de Monge-Ampère, Conf. at the CIRAM, Università di Bologna, October 1995 (to appear).

    Google Scholar 

  80. K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7 (1954) pp. 345–392.

    Article  MathSciNet  MATH  Google Scholar 

  81. A. Fisher and D. P. Marsden, The Einstein evolution equations as a first order quasi-linear symmetric hyperbolic system, Comm. Math. Phys., 28 (1972) pp. 1–38.

    Article  MathSciNet  Google Scholar 

  82. T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ratl. Mech. Analys., 58 (1975) pp. 181–205; Quasi-linear equations of evolution of hyperbolic type with applications to partial differential equations, Lect. Notes in Math., No448, Springer Verlag, New York, Berlin (1975).

    Article  MathSciNet  MATH  Google Scholar 

  83. S. K. Godunov, An interesting class of quasilinear systems, Sov. Math. Doklady, 2 (1961) pp. 947–949.

    MATH  Google Scholar 

  84. K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971) pp. 1686–1688.

    Article  MathSciNet  MATH  Google Scholar 

  85. B. L. van der Waerden, Euler als Schöpfer der Kontinuums-Mechanik, Naturwissenschaften, 71 (1984) pp. 414–417.

    Article  Google Scholar 

  86. Schweizer Lexikon 91 in sechs Bänden, Verlag Schweizer Lexikon, Luzern (1992–93) (Euler).

    Google Scholar 

  87. S. K. Godunov, The problem of a generalized solution in the theory of quasilinear equations and in gas dynamics, Russian Math. Surveys, 17 (1962) pp. 145–156.

    Article  MathSciNet  MATH  Google Scholar 

  88. P. Carbonaro, Exceptional relativistic gas dynamics, Phys. Lett. A, 129 (1988) pp. 372–376.

    Article  MathSciNet  Google Scholar 

  89. A. Greco, Discontinuités des rayons et stricte exceptionnalité en magnéto-hydrodynamique relativiste, Ann. Inst. Henri Poincaré, XII (1975) pp. 217–227.

    MATH  Google Scholar 

  90. A. H. Taub, Relativistic Rankine-Hugoniot equations, Phys. Rev., 74 (1948) pp. 328–334.

    Article  MathSciNet  MATH  Google Scholar 

  91. A. H. Taub, General relativistic shock waves in fluids for which pressure equals energy density, Comm. math. Phys., 29 (1973) pp. 79–88.

    Article  MathSciNet  MATH  Google Scholar 

  92. G. Boillat, A moi compte deux mots. A spelling remark, Math. Intelligencer, 4 (1982) p. 2.

    Article  Google Scholar 

  93. T. Ruggeri and A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems, Ann. Inst. Henri Poincaré, A XXXIV (1981) pp. 65–84.

    MathSciNet  MATH  Google Scholar 

  94. G. Boillat, Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques, C. R. Acad. Sci. Paris, 278 A (1974) pp. 909–912.

    MathSciNet  MATH  Google Scholar 

  95. I-Shih Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Ratl. Mech. Analys., 46 (1972) pp. 131–148.

    MathSciNet  MATH  Google Scholar 

  96. A. Strumia, Main field and symmetric hyperbolic form of the Dirac equation, Lett. N. Cim., 36 (1983) pp. 609–613.

    Article  MathSciNet  Google Scholar 

  97. G. Boillat and T. Ruggeri, Symmetric form of nonlinear mechanics equations and entropy growth across a shock, Acta Mech., 35 (1980) pp. 271–274.

    Article  MATH  Google Scholar 

  98. V. I. Kondaurov, Conservation laws and symmetrization of the equations of the nonlinear theory of elasticity, Sov. Phys. Dokl., 26 (1981) pp. 234–236.

    MATH  Google Scholar 

  99. C. Truesdell, Six lectures on modern natural philosophy, Springer-Verlag, New York (1966) p. 72.

    Book  MATH  Google Scholar 

  100. I. Müller, The coldness, a universal function in thermoelastic bodies, Arch. Ratl. Mech. Analys., 41 (1971) pp. 319–332.

    MathSciNet  MATH  Google Scholar 

  101. I. Müller and T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy, Vol. 37, Springer-Verlag, New York, Berlin (1993).

    MATH  Google Scholar 

  102. K. O. Friedrichs, On the laws of relativistic electro-magneto-fluid dynamics, Comm. Pure Appl. Math., 27 (1974) pp. 749–808; Conservation equations and the law of motion in classical physics, Ibid., 31 (1978) pp. 123–131.

    Article  MathSciNet  MATH  Google Scholar 

  103. G. Boillat, Chocs dans les champs qui dérivent d’un principe variationnel: équation de Hamilton-Jacobi pour la fonction génératrice, C. R. Acad. Sci. Paris 283 A (1976) pp. 539–542.

    MathSciNet  MATH  Google Scholar 

  104. Encyclopaedia of Mathematics, Kluwer Academic Publ., Dordrecht, Boston, London (1988–94).

    Google Scholar 

  105. P. Roman, Theory of elementary particles, North-Holland (1960).

    Google Scholar 

  106. L. L. Foldy, Relativistic wave equations, in D. R. Bates, Quantum Theory, Vol.III, Radiation and High Energy Physics, Academic Press, New York and London (1962) p. 42.

    Google Scholar 

  107. N. N. Bogoliubov and D. V. Shirkov, Introduction to the theory of quantized fields, 3rd. Ed. John Wiley & Sons, New York (1980) p. 41 sqq.

    Google Scholar 

  108. S. De Leo, Duffin-Kemmer-Petiau equation on the quaternion field, Progr. Theor. Phys., 94 (1995) pp. 1109–1120.

    Article  Google Scholar 

  109. G. Boillat, Involutions des systèmes conservatifs, C. R. Acad. Sci. Paris, 307 I (1988) pp. 891–894.

    MathSciNet  MATH  Google Scholar 

  110. A. Lichnerowicz, Théories relativistes de la gravitation et de l’électromagnétisme, Masson, Paris (1955).

    MATH  Google Scholar 

  111. Y. Choquet-Bruhat, Problème de Cauchy pour les modèles gravitationnels avec termes de Gauss-Bonnet, C. R. Acad. Sci. Paris, 306 I (1988) pp. 445–450.

    MathSciNet  MATH  Google Scholar 

  112. C. M. Dafermos, Quasilinear hyperbolic systems with involutions, Arch. Ratl. Mech. Analys., 94 (1986) pp. 373–389.

    Article  MathSciNet  MATH  Google Scholar 

  113. G. Boillat, Symétrisation des systèmes d’équations aux dérivées partielles avec densité d’énergie convexe et contraintes, C. R. Acad. Sci. Paris, 295 I (1982) pp. 551–554.

    MathSciNet  MATH  Google Scholar 

  114. S. K. Godunov, Symmetric form of the equations of magnetohydrodynamics (in Russian), Prepr. Akad. Nauk S.S.S.R. Sib. Otd., Vychisl. Tsentr, 3 No1 (1972) p. 26.

    Google Scholar 

  115. G. Boillat and S. Pluchino, Sopra l’iperbolicità dei sistemi con vincoli e considerazioni sul superfluido e la magnetoidrodinamica, ZAMP 36 (1985) pp. 893–900.

    MathSciNet  Google Scholar 

  116. S. Lundquist, Studies in magneto-hydrodynamics, Arkiv för Fysik, 5 (1952) p. 297.

    MathSciNet  MATH  Google Scholar 

  117. L. Landau and E. Lifchitz, Mécanique des fluides, MIR, Moscou (1971).

    MATH  Google Scholar 

  118. G. Grioli, Ed., Macroscopic theories of superfluids, Internat. Meeting, Accad. Naz. dei Lincei, Rome, May 1988. Cambridge University Press (1991).

    Google Scholar 

  119. G. Boillat and A. Muracchini, On the symmetric conservative form of Landau’s superfluid equations, ZAMP, 35 (1984) pp. 282–288; On a special form of the hydrodynamic superfluid equations, Ibid., 36 (1985) pp.901–904; Thermodynamic conditions for a symmetric form of superfluid equations, N. Cim. 9 D (1987) pp.253–259.

    Article  MATH  Google Scholar 

  120. G. Boillat and T. Ruggeri, Hyperbolic principal subsystems: entropy, convexity and subcharacteristic conditions, Arch. Ratl. Mech. Analys. (to appear).

    Google Scholar 

  121. T.-P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys., 108 (1987) pp. 153–175.

    Article  MathSciNet  MATH  Google Scholar 

  122. G.-Q. Chen, C. D. Levermore and T.-P. Liu, Hyperbolic conservative laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 67 (1994) pp.787–830.

    Article  MathSciNet  MATH  Google Scholar 

  123. W. Weiss, Hierarchie der Erweiterten Thermodynamik, Dissertation TU Berlin (1990).

    Google Scholar 

  124. C. Cercignani and A. Majorana, Analysis of thermal and shear waves according to the B. G. K. kinetic model, ZAMP, 36 (1985) pp. 699–711.

    Article  MathSciNet  MATH  Google Scholar 

  125. H. Ott, Lorentz-Transformation der Wärme und der Temperatur, Zs. f. Phys., 175 (1963) pp. 70–104.

    Article  MATH  Google Scholar 

  126. H. Arzeliès, Relativistic transformation of temperature and some other thermodynamical quantities (in French), N. Cim., 35 (1965) pp. 792–804.

    Article  Google Scholar 

  127. C. Møller, The Theory of Relativity, 2nd Ed., Clarendon Press, Oxford (1972).

    Google Scholar 

  128. J. Putterman, Superfluid hydrodynamics, North Holland, Amsterdam (1974).

    Google Scholar 

  129. J. R. Dorroh, Nonlinear symmetric first-order systems, J. Math. Analys. Appls., 91 (1983) pp. 523–526.

    Article  MathSciNet  MATH  Google Scholar 

  130. G. Boillat, On symmetrization of partial differential systems, Applicable Analys., 57 (1995) pp. 17–21.

    Article  MathSciNet  MATH  Google Scholar 

  131. G. Boillat, Limitation des vitesses de choc quand la densité d’énergie est convexe et les contraintes involutives, C. R. Acad. Sci. Paris, 297I (1983) pp. 141–143.

    MathSciNet  MATH  Google Scholar 

  132. G. Boillat, Evolution des chocs caractéristiques dans les champs dérivant d’un principe variationnel, J. Maths. Pures et Appl., 56 (1977) pp. 137–147.

    MathSciNet  MATH  Google Scholar 

  133. E. Hölder, Historischer Überblick zur mathematischen Theorie von Unstetigkeitswellen seit Riemann und Christoffel, in E. B. Christoffel: The Influence of his Work on Mathematics and the Physical Sciences, Internat. Symp., Aachen, 1979 (1981).

    Google Scholar 

  134. P. Germain, Schock waves, jump relations and structure, Adv. in Appl. Mech. Ed. by Chia-Shun Yih, Vol. 12, Academic Press, New York (1972) pp. 131–144.

    Google Scholar 

  135. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Regional Conf. Series in Appl. Math., No 11, SIAM, Philadelphia (1973).

    Book  MATH  Google Scholar 

  136. C. M. Dafermos and R. J. Diperna, The Riemann problem for certain classes of hyperbolic systems of conservation laws, J. Diff. Eqs., 20 (1976) pp. 90–114.

    Article  MathSciNet  MATH  Google Scholar 

  137. M. Berger and M. Berger, Perspectives in Nonlinearity, W.A. Benjamin Inc., New York (1968) p.137.

    MATH  Google Scholar 

  138. G. Boillat and T. Ruggeri, Limite de la vitesse des chocs dans les champs à densité d’énergie convexe, C. R. Acad. Sci. Paris, 289 A (1979) pp. 257–258.

    MathSciNet  MATH  Google Scholar 

  139. G. Boillat and A. Strumia, Limitation des vitesses d’onde et de choc quand la densité relativiste d’entropie (ou d’énergie) est convexe, Ibid., 307 I (1988) pp. 111–114.

    MathSciNet  MATH  Google Scholar 

  140. B. L. Keyfitz and H. C. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Ratl. Mech. Analys., 72 (1980) pp. 219–241.

    Article  MathSciNet  MATH  Google Scholar 

  141. C. M. Dafermos, Admissible wave fans in nonlinear hyperbolic systems, Ibid., 106 (1989) pp. 243–260.

    Article  MathSciNet  MATH  Google Scholar 

  142. T.-P. Liu, Admissible solutions of hyperbolic conservation laws, Memoirs Am. Math. Soc., 240 (1981) pp. 1–78.

    MathSciNet  Google Scholar 

  143. G. Boillat, Hamilton-Jacobi equation for shocks with a convex entropy density, in 7th Conf. on Waves and Stability in Continuous Media, Bologna, 1993. Ed. by S. Rionero & T. Ruggeri. Quaderno CNR. Series in Adv. in Math. & Appl. Sciences, Vol. 23, World Scientific, Singapore, New Jersey, London, Hong-Kong (1994) pp. 22–25.

    Google Scholar 

  144. G. Boillat, Chocs avec contraintes et densité d’énergie convexe, C. R. Acad. Sci. Paris, 295 I (1982) pp. 747–750.

    MathSciNet  MATH  Google Scholar 

  145. G. Boillat, De la nature des chocs, in Onde e stabilità nei mezzi continui, Cosenza, giugno 1983. Quaderni del CNR, Catania (1986) pp. 35–39.

    Google Scholar 

  146. G. Boillat, De la vitesse de choc considérée comme valuer propre, C. R. Acad. Sci. Paris, 302 I (1986) pp. 555–557.

    MathSciNet  MATH  Google Scholar 

  147. P. D. Lax, Shock waves and entropy in Contribution to non linear functional analysis. Ed. by Zarantonello, Academic Press, New York (1971).

    Google Scholar 

  148. C. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws, Arch. Ratl. Mech. Analys., 107 (1989) p. 127.

    Article  MathSciNet  MATH  Google Scholar 

  149. D. Fusco, Alcune considerazioni sulle onde d’urto in fluidodinamica, Atti Sem. Mat. Fis. Univ. Modena, 28 (1979) p. 223.

    MathSciNet  MATH  Google Scholar 

  150. N. Virgopia and F. Ferraioli, On the shock wave generating function in a single mixture of gases, N. Cim., D 7 (1988) p. 151.

    Article  Google Scholar 

  151. A. Strumia, A detailed study of entropy jump across shock waves in relativistic fluid dynamics, N. Cim., B 92 (1986) p. 91.

    Article  MathSciNet  Google Scholar 

  152. W. Dreyer and S. Seelecke, Entropy and causality as criteria for the existence of shock wave in low temperature ideal conduction, Cont. Mech. Thermodyn., 4 (1992) pp. 23–36.

    Article  MathSciNet  MATH  Google Scholar 

  153. L. Seccia, Shock wave propagation and admissibility criteria in a non linear dielectric medium, Ibid.,, 7 (1995) pp. 277–296.

    MathSciNet  MATH  Google Scholar 

  154. N. Manganaro and G. Valenti, On shock propagation for a compressible fluid supplemented by a generalized von Kármán law, Atti. Sem. Mat. Fis. Univ. Modena, XXXVIII (1990) pp. 109–122.

    MathSciNet  MATH  Google Scholar 

  155. G. Boillat and A. Muracchini, The structure of the characteristic shocks in constrained symmetric systems with applications to magnetohydrodynamics, Wave Motion, 11 (1989) pp. 297–307.

    Article  MathSciNet  MATH  Google Scholar 

  156. G. Boillat, Chocs caractéristiques et ondes simples exceptionnelles pour les systèmes conservatifs à intégrale d’énergie; forme explicite de la solution, C. R. Acad. Sci. Paris, 280 A (1975) pp. 1325–1328.

    MathSciNet  MATH  Google Scholar 

  157. T. Ruggeri, On same properties of electromagnetic shock waves in isotropic nonlinear materials, Boll. Un. Mat. Ital., 9 (1974) pp. 513–522.

    MathSciNet  Google Scholar 

  158. G. Boillat, Expression explicite des chocs caractéristiques de croisement, C. R. Acad. Sci. Paris, 312 I (1991) pp. 653–656.

    MathSciNet  MATH  Google Scholar 

  159. A. Jeffrey, Magnetohydrodynamics, Oliver & Boyd, London (1966).

    MATH  Google Scholar 

  160. H. Cabannes, Theoretical magnetofluid-dynamics, Academic Press, New York (1970).

    Google Scholar 

  161. G. Boillat and A. Muracchini, Characteristic shocks of crossing velocities in magnetohydrodynamics, NoDEA, 3, (1996), pp. 217–230.

    Article  MathSciNet  MATH  Google Scholar 

  162. G. Boillat and T. Ruggeri, Characteristic shocks: completely and strictly exceptional systems, Boll. Un. Mat. Ital., 15 A (1978) pp.197–204.

    MathSciNet  MATH  Google Scholar 

  163. P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964) pp.611–613.

    Article  MathSciNet  MATH  Google Scholar 

  164. G. Boillat, Shock relations in nonlinear electrodynamics, Phys. Lett., 40 A (1972) pp.9–10.

    Article  Google Scholar 

  165. G. Boillat and T. Ruggeri, Euler equations for nonlinear relativistic strings. Introduction of a new Lagrangian, Progr. Theor. Phys., 60 (1978) pp.1928–1929.

    Article  Google Scholar 

  166. A. Greco, On the strict exceptionality for a subsonic flow, in 2o Congresso Naz. AIMETA, Università di Napoli, Facoltà di Ingegneria, 4 (1974) pp.127–134.

    Google Scholar 

  167. G. Boillat, A relativistic fluid in which shock fronts are also wave surfaces, Phys. Lett., 50 A (1974) pp.357–358.

    Article  Google Scholar 

  168. L. Brun, Ondes de choc finies dans les solides élastiques, in Mechanical waves in solids. Ed. by J. Mandel & L. Brun, Springer, Vienna (1975).

    Google Scholar 

  169. A. Morro, Atti Accad. Naz. Lincei Rend., 64 (1978) p.177; Acta Mech., 38 (1981) p.241; On stablity in the interaction between shock waves and acoustic waves, in Onde e stabilità nei mezzi continui, Catania, Nov.1981. Quaderni del CNR, Catania (1982) pp.18–47.

    MathSciNet  Google Scholar 

  170. A. Strumia, Transmission and reflexion of a discontinuity wave through a characteristic shock in nonlinear optics, Riv. Mat. Univ. Parma, 4 (1978) p.15.

    MathSciNet  MATH  Google Scholar 

  171. G. Boillat and T. Ruggeri, Reflection and transmission of discontinuity waves through a shock wave. General theory including also the case of characteristic shocks, Proc. Roy. Soc. Edinburgh, 83 A (1979) pp. 17–24.

    Article  MathSciNet  MATH  Google Scholar 

  172. A. Donato and D. Fusco, Nonlinear wave propagation in a layered halfspace, Int. J. Nonlinear Mechanics, 15 (1980) pp.497–503.

    Article  MathSciNet  MATH  Google Scholar 

  173. A. M. Anile and S. Pennisi, On the mathematical structure of the relativistic magnetofluid-dynamics, Ann. Inst. Henri Poincaré, 46 (1987) p.27.

    MathSciNet  MATH  Google Scholar 

  174. A. M. Anile, Relativistic fluids and magneto-fluids, Cambridge University Press, 1989.

    Google Scholar 

  175. G. Boillat and T. Ruggeri, Wave and shock velocities in relativistic magnetohydrodynamics compared with the speed of light, Continuum Mech. Thermodyn., 1 (1989) pp.47–52.

    Article  MathSciNet  MATH  Google Scholar 

  176. A. Lichnerowicz, Ondes de choc, ondes infinitésimales et rayons en hydrodynamique et magnétohydrodynamique relativistes, in Relativistic Fluid Dynamics, Corso CIME, Bressanone, 1970. Ed. by C. Cattaneo, Cremonese, Roma (1971); Shock waves in relativistic magnetohydrodynamics under general assumptions, J. Math. Phys., 17 (1976) p.2125.

    Google Scholar 

  177. W. Israel, Relativistic theory of shock waves, Proc. Roy. Soc., 259 A (1960) p.129.

    Article  MathSciNet  MATH  Google Scholar 

  178. A. Lichnerowicz, Magnetohydrodynamics: waves and shock waves in curved space-time. Mathematical Studies, 14. Kluwer Academic Publ. Group, Dordrecht (1994).

    Book  MATH  Google Scholar 

  179. Y. Choquet-Bruhat, Fluides chargés non abéliens de conductivité infinie, C. R. Acad. Sci. Paris, 314 I (1992) pp.87–91; Hydrodynamics and magnetohydrodynamics of Yang-Mills fluids, in 7th Conf. on Waves and Stability in continuous media, Bologna (1993) (op. cit.).

    MathSciNet  MATH  Google Scholar 

  180. S. Pennisi, A covariant and extended model for relativistic magnetofluiddynamics, Ann. Inst. Henri Poincaré, 58 (1993) pp.343–361.

    MathSciNet  MATH  Google Scholar 

  181. G. Boillat, Sur l’élimination des contraintes involutives, C. R. Acad. Sci. Paris, 318 I (1994) pp.1053–1058.

    MathSciNet  Google Scholar 

  182. C. Cattaneo, Sulla conduzione del calore, Atti. Sem. Mat. Fis. Univ. Modena, 3 (1948) p.1.

    MathSciNet  MATH  Google Scholar 

  183. T. Ruggeri, Struttura dei sistemi alle derivate parziali compatibili con un principio di entropia e termodinamica estesa, Suppl. Boll. Un. Mat. Ital., 4 (1985) p.261; Thermodynamics and symmetric hyperbolic systems, Rend. Sem. Mat. Univ. Torino, special issue: Hyperbolic equations, 167 (1987).

    MathSciNet  Google Scholar 

  184. A. Morro and T. Ruggeri, Non-equilibrium properties of solids obtained from second-sound measurements, J. Phys. C: Solid State Phys., 21 (1988) p.1743.

    Article  Google Scholar 

  185. F. Franchi and A. Morro, Global existence and asymptotic stability in nonlinear heat conduction, J. Math. Analys. Appls., 188 (1994) pp.590–609.

    Article  MathSciNet  MATH  Google Scholar 

  186. G. B. Nagy, O. E. Ortiz and O. A. Reula, The behavior of hyperbolic heat equations’ solutions near their parabolic limits, J. Math. Phys., 35 (1994) pp.4334–4356.

    Article  MathSciNet  MATH  Google Scholar 

  187. A. M. Anile, S. Pennisi and M. Sammartino, A thermodynamical approach to Eddington factors, J. Math. Physics, 32 (1991) pp.544–550.

    Article  MathSciNet  MATH  Google Scholar 

  188. G. Boillat, Convexité et hyperbolicité en électrodynamique non linéaire, C. R. Acad. Sci. Paris, 290 A (1980) pp.259–261.

    MathSciNet  MATH  Google Scholar 

  189. G. Boillat and A. Giannone, A constraint on wave, radial and shock velocities in non-linear electromagnetic materials, ZAMP, 40 (1989) pp.285–289.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Tommaso Ruggeri

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Boillat, G. (1996). Non linear hyperbolic fields and waves. In: Ruggeri, T. (eds) Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, vol 1640. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0093705

Download citation

  • DOI: https://doi.org/10.1007/BFb0093705

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61907-9

  • Online ISBN: 978-3-540-49565-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics