Skip to main content

Path integrals over manifolds

  • V. Quantization Methods
  • Conference paper
  • First Online:
Differential Geometric Methods in Mathematical Physics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 905))

Abstract

Path integrals are considered for the cases where the underlying manifold is multiply connected or non-flat. In case of multiple connectivity, the contributions of different homotopy classes of paths are analyzed with the help of covering spaces. In case of a non-flat manifold, it is pointed out that a judicious choice of the free Hamiltonian operator and of normalizing factors can eliminate the explicit occurrence of the scalar curvature. (A heuristic approach to path integrals is adopted in case of non-flat spaces.)

The present article constitutes a revised text of a seminar which the author gave at a summer school at T.U. Clausthal in 1979. This article is included in the present proceedings by a special arrangement with the editors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laidlaw, M.G.G. and DeWitt, C.M., Phys. Rev. D3, 1375 (1971).

    Google Scholar 

  2. Dowker, J.S., J. Phys. A: Gen. Phys. 5, 936 (1972).

    Article  MathSciNet  Google Scholar 

  3. Hurt, N.E., in: Group theoretical methods in physics (proc., Nijmegen 1975), edited by A. Janner, T. Janssen and M. Boon (Springer-Verlag, Berlin-Heidelberg-New York, 1976; Lecture notes in physics 50), p. 182.

    Chapter  Google Scholar 

  4. DeWitt, B.S., Revs. Mod. Phys. 29, 377 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  5. Dowker, J.S., in: Functional integration and its applications (proc., London 1974), edited by A.M. Arthurs (Oxford University Press, London, 1975), p. 34.

    Google Scholar 

  6. Dekker, H., in: Functional integration, theory and applications (proc., Louvain-la-Neuve 1979), edited by J-P. Antoine and E. Tirapegui (Plenum Press, New York and London, 1980), p. 207.

    Chapter  Google Scholar 

  7. Mizrahi, M.M., J. Math. Phys. 16, 2201 (1975).

    Article  MathSciNet  Google Scholar 

  8. Schulman, L., Phys. Rev. 176, 1558 (1968).

    Article  MathSciNet  Google Scholar 

  9. DeWitt, C.M., Ann. Inst. H. Poincaré A11, 153 (1969).

    MathSciNet  Google Scholar 

  10. Spanier, E.H., Algebraic topology (McGraw-Hill Book Co., New York etc., 1966), chapters 1 and 2.

    MATH  Google Scholar 

  11. Tarski, J., in: Feynman path integrals—proc., Marseille 1978, edited by S. Albeverio, Ph. Combe, R. Høegh-Krohn, G. Rideau, M. Sirugue-Collin, M. Sirugue, and R. Stora (Springer, as in ref. 3,, 1979; Lecture notes in physics 106), p. 254.

    Chapter  Google Scholar 

  12. Tarski, J., in: Functional integration, theory and applications (as in ref. 6),(, p. 143.

    Chapter  Google Scholar 

  13. Tarski, J., Acta Phys. Austr. 44, 89 (1976), especially pp. 101–102.

    MathSciNet  Google Scholar 

  14. Berg, H.P. and Tarski, J., in: Functional integration, theory and applications (as in ref. 6),(, p. 125, especially sec. 5.

    Chapter  Google Scholar 

  15. DeWitt, B.S., Phys. Rev. 85, 653 (1952).

    Article  MathSciNet  Google Scholar 

  16. Śniatycki, J., Geometric quantization and quantum mechanics (Springer, as in ref. 3,, 1980; Applied math. sciences, vol. 30), especially sec. 7.2.

    Chapter  Google Scholar 

  17. Eisenhart, L.P., Riemannian geometry (Princeton University Press, Princeton, N.J., 1960).

    Google Scholar 

  18. Pauli, W., Ausgewählte Kapitel aus der Feldquantisierung, 2nd edition (lecture notes from ETH, Zürich, 1957; reprinted: Boringhieri, Torino, 1962), Anhang: p. 139 ff.

    Google Scholar 

  19. Choquard, Ph., Helv. Phys. Acta 28, 89 (1955).

    MathSciNet  MATH  Google Scholar 

  20. Doob, J.L., Trans. Amer. Math. Soc. 77, 86 (1954), especially secs. 5, 7.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tarski, J. (1982). Path integrals over manifolds. In: Doebner, HD., Andersson, S.I., Petry, H.R. (eds) Differential Geometric Methods in Mathematical Physics. Lecture Notes in Mathematics, vol 905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092440

Download citation

  • DOI: https://doi.org/10.1007/BFb0092440

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11197-9

  • Online ISBN: 978-3-540-39002-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics