Skip to main content

Quantization in Curved Spaces

Functional Integration and the Quantum Action Principle in Riemannian Geometries

  • Chapter
Functional Integration

Abstract

Feynman’s path integral representation of the covariant quantum mechanical propagator entails Schwinger’s dynamical variational principle as shown by DeWitt. On one hand we discuss the covariant quantum Hamiltonian obtained from Schwinger’s principle in curved space, following Kawai. On the other hand we present a novel Fourier series analysis of the path integral itself. The resulting Hamiltonian is identical to Kawai’s. For the ‘free particle’ the Hamiltonian involves a quantum mechanical curvature scalar potential v=ħ2R/8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Dekker, Physica 85A, 363 (1976).

    MathSciNet  Google Scholar 

  2. R.P. Feynman, Revs. Mod. Phys. 20, 327 (1948).

    Article  MathSciNet  Google Scholar 

  3. B.S. DeWitt, Revs. Mod. Phys. 29, 377 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Podolski, Phys. Rev. 32, 812 (1928).

    Article  Google Scholar 

  5. S. Weinberg, Gravitation and Cosmology, Wiley, New York (1972).

    Google Scholar 

  6. J. Schwinger, Quantum Kinematics and Dynamics, Benjamin, New York (1970).

    MATH  Google Scholar 

  7. R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965).

    MATH  Google Scholar 

  8. H. Dekker, Phys. Lett. 65A, 388 (1978).

    MathSciNet  Google Scholar 

  9. T. Kawai, Found. Phys. 5, 143 (1975).

    Article  MathSciNet  Google Scholar 

  10. H. Dekker, Phys. Rev. A19, 2102 (1979).

    MathSciNet  Google Scholar 

  11. F. Langouche, D. Roekaerts and E. Tirapegui, preprint KUL-TF-78/027(Leuven), to appear in Phys.Rev.A.

    Google Scholar 

  12. C. Lanczos, The Variational Principles of Mechanics, Univ. Press, Toronto (1970).

    MATH  Google Scholar 

  13. G.A. Ringwood, J. Phys. A9, 1253 (1976).

    MathSciNet  Google Scholar 

  14. U. Deininghaus and R. Graham, Z.Phys. B34, 211 (1979).

    MathSciNet  Google Scholar 

  15. O. Veblen, Invariants of Quadratic Differential Forms, Univ. Press, Cambridge (1952).

    Google Scholar 

  16. C. Lanczos, Discourse on Fourier Series, Oliver and Boyd, Edinburgh (1966).

    MATH  Google Scholar 

  17. I.S. Gradshteyn and I.W. Ryzhik, Table of Integrals, Series and Products, Academic, New York (1965).

    Google Scholar 

  18. H. Dekker, Physica 84A, 205 (1976).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Dekker, H. (1980). Quantization in Curved Spaces. In: Antoine, JP., Tirapegui, E. (eds) Functional Integration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7035-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7035-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7037-0

  • Online ISBN: 978-1-4615-7035-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics