Skip to main content

Asymptotic analysis of hamiltonian systems

  • Part 1 Survey Paper
  • Conference paper
  • First Online:
Asymptotic Analysis II —

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 985))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfriend, K.T. (1971), Stability and motion in two degree-of-freedom Hamiltonian systems for two-to-one commensurability, Celestial Mech. 3, 247–265.

    Article  MATH  Google Scholar 

  • Alfriend, K.T. (1971), Stability of and motion about L4 at three-to-one commensurability, Celes. Mech. 4.

    Google Scholar 

  • Alfriend, K.T. (1971), Stability of motion in two degree of freedom Hamiltonian systems for three-to-one commensurability, Int. J. Nonlinear Mech. 6, 563–578.

    Article  MATH  Google Scholar 

  • Alfriend, K.T. & Richardson, D.L. (1973), Third and fourth order resonances in Hamiltonian systems, Celes. Mech. 7, 408–420.

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen, C.M. & Geer, J.F. (1982), Power series expansions for the frequency and period of the Van der Pol-equation, SIAM J. Appl. Math. 42, 678–693.

    Article  MathSciNet  MATH  Google Scholar 

  • Arnol’d, V.I. (1963), Small denominators and problems of stability of motion in classical and celestial mechanics, Russian Math. Surveys 18, 6, 85–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Arnol’d, V.I. (1964), Instability of dynamical systems with many degrees of freedom, Soviet Math. Dokl. 5, 581–585.

    MATH  Google Scholar 

  • Arnol’d, V.I. (1976), Les méthodes mathématiques de la mécanique classique, Ed. Mir., Moscou; Russian edition, Moscow, 1974; English edition, Springer-Verlag 1978.

    Google Scholar 

  • Berry, M.V. (1978), Regular and irregular motion, in: Topics in Nonlinear Dynamics, S. Jorna (ed.), Am. Inst. Phys. Conf. Proc. 46, 16.

    Google Scholar 

  • Birkhoff, G.D. (1927), Dynamical systems, American Math. Soc.; the 1966 edition as Coll. Publ. 9 contains footnotes by J. Moser.

    Google Scholar 

  • Bogoliubov, N.N. & Mitropolsky, Y.A. (1961), Asymptotic methods in the theory of non-linear oscillations, Gordon and Breach Publ., New York.

    Google Scholar 

  • Braun, M. (1973), On the applicability of the third integral of motion, J. Diff. Equations 13, 300–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Brjuno, A.D. (1970), Instability in a Hamiltonian system and the distribution of asteroids, Math. USSR Sbornik 12, 2, 271–312.

    Article  MathSciNet  Google Scholar 

  • Brjuno, A.D. (1971), Analytic form of differential equations, Trans. Moscow Math. Soc. 25, 131–288 (1972), part II, Trans. Moscow Math. Soc. 26, 199–239.

    MathSciNet  Google Scholar 

  • Cheshankov, B.I. (1974), Two-frequency resonant oscillations of conservative systems, PMM 38, 749–756, transl. Appl.Math. Mech. 38, 700–708 (1975).

    MathSciNet  MATH  Google Scholar 

  • Churchill, R., Pecelli, G. & Rod, D. (1979), A survey of the Hénon-Heiles Hamiltonian with applications to related examples; in Stochastic behaviour in classical and quantum Hamiltonian systems (G. Casati & J. Ford eds.), Lecture Notes Physics 93, 76–136, Springer-Verlag, New York etc.

    Chapter  Google Scholar 

  • Churchill, R., Kummer, M. & Rod, D. (1982), On averaging, reduction and symmetry in Hamiltonian systems, to be published in J. Differential Equations.

    Google Scholar 

  • Contopoulos, G. (1960), A third integral of motion in a galaxy, Zeitschrift f. Astroph. 49, 273–291.

    MathSciNet  MATH  Google Scholar 

  • Contopoulos, G. (1975), Integrals of motion, in Dynamics of stellar systems (Hayli, ed.), 209–225, I.A.U.

    Google Scholar 

  • Cushman, R. (1979), Stability of the 2: 1-resonance bifurcation, Unpubl. Manuscript Series, Math. Institute, Rijksuniversiteit Utrecht, 3508 TA Utrecht, The Netherlands.

    Google Scholar 

  • Cushman, R. (1982). Geometry of the bifurcations of the normalized reduced Hénon-Heiles family, Proc. R. Soc. Lond. A 382, 361–371.

    Article  MathSciNet  MATH  Google Scholar 

  • Cushman, R. (1982), Reduction, Brouwer’s Hamiltonian, and the critical inclination, preprint 243 Math. Institute, Rijksuniversiteit Utrecht, The Netherlands.

    Google Scholar 

  • Danby, J.M.A. (1971), Qualitative methods in celestial mechanics, Publ. Inst. Mat. Estat., Univ. São Paulo.

    Google Scholar 

  • Dasenbrock, R.R. (1973), Algebraic manipulation by computer, Naval Research Lab. Report 7564, Washington, D.C.

    Google Scholar 

  • Deprit, A. & Rom, A.R.M. (1967), Asymptotic representations of the cycle of Van der Pol’s equation for small damping coefficients, ZAMP 18, 736–747.

    Article  MATH  Google Scholar 

  • Deprit, A., Henrard, J., Price, J.F., Rom, A. (1969), Birkhoff’s normalization, Celes. Mechanics 1, 222–251.

    Article  MathSciNet  MATH  Google Scholar 

  • De Zeeuw, T. (1982), Periodic orbits in triaxial galaxies, Proc. CECAM Workshop on Structure, Formation and Evolution of Galaxies (J. Audouze & C. Norman, eds.), page 11, Paris.

    Google Scholar 

  • De Zeeuw, T. & Merritt, D. (1983), Stellar orbits in a triaxial galaxy. I. Orbits in the plane of rotation, Astrophysical J., to be published.

    Google Scholar 

  • Diana, E., Galgani, L., Giorgilli, A. & Scotti, A. (1975), On the direct construction of formal integrals of a Hamiltonian system near an equilibrium point, Bol. U.M.I. (4) 11, 84–89.

    MathSciNet  MATH  Google Scholar 

  • Duistermaat, J.J. (1972), On periodic solutions near equilibrium points of conservative systems, Arch. Rat. Mech. Anal. 45, 143–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Duistermaat, J.J. (1981), Periodic solutions near equilibrium points of Hamiltonian systems, Proc. Conf. Nijmegen 1980, Axelsson, Frank, Van der Sluis (eds.), North Holland Publ., Math. Studies 47, Amsterdam etc.

    Google Scholar 

  • Duistermaat, J.J. (1980), On global action-angle coordinates, Comm. Pure Appl. Math. 33, 687–706.

    Article  MathSciNet  MATH  Google Scholar 

  • Fermi, E., Pasta, J. & Ulam, S. (1955), Studies of nonlinear Problems I. Los Alamos Report LA-192/0; reprinted in Nonlinear Wave Motion, A.C. Newell ed., Lectures Appl. Math. 15, 143–156, A.M.S. 1974.

    Google Scholar 

  • Ford, J. (1975), Ergodicity for nearly linear oscillator systems, in Fundamental Probl. Statist. Mechanics III (E.G.D. Cohen ed.).

    Google Scholar 

  • Giacaglia, G.E.O. (1972), Perturbation methods in non-linear systems, Appl. Math. Scs. 8, Springer-Verlag, New York etc.

    MATH  Google Scholar 

  • Gilchrist, A.O. (1961), The free oscillations of conservative quasilinear systems with two degrees of freedom, Int. J. Mech. Sci. 3, 286–311.

    Article  Google Scholar 

  • Giorgilli, A. & Galgani, L. (1978), Formal integrals for an autonomous Hamiltonian system near an equilibrium point, Celes. Mechanics 17, 267–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustavson, F.G. (1966), On constructing formal integrals of a Hamiltonian system near an equilibrium point, Astron J. 71, 670–686.

    Article  Google Scholar 

  • Hadjidemetriou, J.D. (1982), On the relation between resonance and instability in planetary systems, Celes. Mechanics 27, 305–322.

    Article  MathSciNet  MATH  Google Scholar 

  • Helleman, R.H.G. (1980), Self-generated chaotic behavior in nonlinear mechanics, in: Fundamental Probl. Stat. Mech., 5 E.G.D. Cohen (ed.), North Holland Publ., Amsterdam etc.

    Google Scholar 

  • Hénon, M. & Heiles, C. (1964), The applicability of the third integral of motion; some numerical experiments, Astron. J. 69, 73–79.

    Article  MathSciNet  Google Scholar 

  • Henrard, J. (1976), Poisson series processor, Facultés Universitares, Notre-Dame de la Paix, Namur, Belgium.

    Google Scholar 

  • Henrard, J. & Meyer, K.R. (1977), Averaging and bifurcations in symmetric systems, SIAM J. Appl. Math. 32, 133–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Jackson, E.A. (1978), Nonlinearity and irreversability in lattice dynamics, Rocky Mount. J. Math. 8, 127–196.

    Article  Google Scholar 

  • Jaeger, E.F. & Lichtenberg, A.J. (1972), Resonant modification and destruction of adiabatic invariants, Ann. Physics 71, 319–356.

    Article  Google Scholar 

  • Jefferys, W.H. (1970), A Fortran-based list processor for Poisson series, Celestial Mech. 2, 474–477.

    Article  Google Scholar 

  • Kirchgraber, U. & Stiefel, E. (1978), Methoden der analytischen Störungsrechung und ihre Anwendungen, B.G. Teubner, Stuttgart.

    Google Scholar 

  • Kummer, M. (1975), An interaction of three resonant modes in a nonlinear lattice, J. Math. Analysis Applics. 52, 64–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Kummer, M. (1976), On resonant nonlinearly coupled oscillators with two equal frequencies, Comm. Math. Phys. 48, 53–79.

    Article  MathSciNet  MATH  Google Scholar 

  • Markeev, A.P. (1969), On the stability of the triangular libration points in the circular bounded three-body problem, Appl. Math. 33, 105.

    MathSciNet  MATH  Google Scholar 

  • Martinet, L., Magnenat, P. & Verhulst, F. (1981), On the number of isolating integrals in resonant systems with 3 degrees of freedom, Celes. Mechanics 29, 93–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Martinet, L. & Magnenat, P. (1981), Invariant surfaces and orbital behaviour in dynamical systems, preprint Obervatory of Genova.

    Google Scholar 

  • Meyer, K.R. & Schmidt, D. (1971), Periodic orbits near L4 for mass ratios near the critical mass ratio of Routh, Celes. Mechanics 4, 99–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Moser, J. (1973), Stable and random motions in dynamical systems, Ann. Math. Studies, Princeton Un. Press.

    Google Scholar 

  • Moser, J. (1976), Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math., 29 727–747.

    Article  MathSciNet  MATH  Google Scholar 

  • Addendum: Comm. Pure Appl. Math. 31, 529–530 (1978).

    Google Scholar 

  • Nayfeh, A.H. & Kamel, A.A. (1970), Three-to-one resonances near the equilateral libration points, AIAAJ 8, 2245.

    Article  MATH  Google Scholar 

  • Nayfeh, A.H. & Mook, D.T. (1979), Nonlinear oscillations, Wiley-Interscience, New York etc.

    MATH  Google Scholar 

  • Nekhoroshev, N.N. (1977), An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russ. Math. Surveys 32, 6, 1–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Peale, S.J. (1976), Orbital resonances in the solar system, Ann. Rev. Astron. Astrophys. 14, 215–246.

    Article  Google Scholar 

  • Pecelli, G. & Thomas, E.S. (1979), Normal modes, uncoupling, and stability for a class of nonlinear oscillators, Quart. Appl. Math. 37, 281–301.

    MathSciNet  MATH  Google Scholar 

  • Perko, L.M. (1969), Higher order averaging and related methods for perturbed periodic and quasi-periodic systems, SIAM J. Appl. Math. 17, 698–724.

    Article  MathSciNet  MATH  Google Scholar 

  • Pöschel, J. (1982), Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. 35, 653–695.

    Article  MathSciNet  MATH  Google Scholar 

  • Presler, W.H. & Broucke, R. (1982), Computerized formal solutions of dynamical systems with two degrees of freedom and an application to the Contopoulos potential, 2 parts, Comp. Math. Appls. (in press).

    Google Scholar 

  • Rafel, G.G. (1982), Asymptotic solutions for a class of nonlinear vibration problems, thesis Rijksuniversiteit Utrecht, The Netherlands.

    Google Scholar 

  • Rom, A. (1970), Mechanized algebraic operations, Celestial Mech. 1, 301–319.

    Article  MathSciNet  MATH  Google Scholar 

  • Rom, A. (1971), Echeloned series processor, Celestial Mech. 2, 311–345.

    MATH  Google Scholar 

  • Rott, N. (1970), A multiple pendulum for the demonstration of non-linear coupling, ZAMP 21, 570–582.

    Article  MATH  Google Scholar 

  • Sanders, J.A. (1978a), Are higher order resonances really interesting?, Celes. Mechanics 16, 421–440.

    Article  MathSciNet  MATH  Google Scholar 

  • Sanders, J.A. (1978b), On the theory of nonlinear resonance, thesis Rijksuniversiteit Utrecht, The Netherlands.

    Google Scholar 

  • Sanders, J.A. & Verhulst F. (1979), Approximations of higher order resonances with an application to Contopoulos’ model problem, Lecture Notes Math. 711, 209–228, Springer-Verlag, Berlin etc.

    Article  MathSciNet  MATH  Google Scholar 

  • Sanders, J.A. (1981), Second quantization and averaging: Fermi resonance, J. Chem. Phys. 74 (10), 5733–5736.

    Article  MathSciNet  Google Scholar 

  • Schmidt, D.S. & Sweet, D. (1973), A unifying theory in determining periodic families for Hamiltonian systems at resonance, J. Differential Equations 14, 597–609.

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt, D.S. (1974), Periodic solutions near a resonant equilibrium of a Hamiltonian system, Celestial Mechanics 9, 81–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Siegel, C.L. (1954), Ueber die Existenz einer Normalform analytischer Hamiltonischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann. 128, 144–170.

    Article  MathSciNet  MATH  Google Scholar 

  • Siegel, C.L. & Moser, J.K. (1971), Lectures on celestial mechanics, Springer-Verlag, Berlin etc.

    Book  MATH  Google Scholar 

  • Takens, F. (1974), Singularities of vector fields, Publ. Math. IHES 43, 47–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Van der Aa, E. & Sanders, J.A. (1979), The 1: 2: 1-resonance, its periodic orbits and integrals, Lecture Notes Math. 711 (Verhulst, ed.), Springer-Verlag, Berlin etc.

    Google Scholar 

  • Van der Aa, E. (1981), First order resonances in three-degrees-of-freedom systems, preprint 197, Math. Institute, Rijksuniversiteit Utrecht, The Netherlands; submitted to Celestial Mechanics.

    MATH  Google Scholar 

  • Van der Aa, E. & Verhulst, F. (1982), Asymptotic integrability and periodic solutions of a Hamiltonian system in 1: 2: 2-resonance, preprint 247, Math. Institute, Rijksuniversiteit Utrecht, The Netherlands.

    MATH  Google Scholar 

  • Van der Burgh, A.H.P. (1968), On the asymptotic solutions of the differential equations of the elastic pendulum, J. de Méconique, 7, 507–520.

    MATH  Google Scholar 

  • Van der Burgh, A.H.P. (1974), Studies in the asymptotic theory of nonlinear resonance, Thesis Delft, The Netherlands.

    Google Scholar 

  • Van der Burgh, A.H.P. (1975), On the higher order asymptotic approximations for the solutions of the equations of motion of an elastic pendulum, J. Sound and Vibr. 42, 463–475.

    Article  MATH  Google Scholar 

  • Van der Meer, J.-C. (1982), Nonsemisimple 1: 1-resonance at an equilibrium, Celes. Mechanics 27, 131–149.

    Article  MathSciNet  MATH  Google Scholar 

  • Verhulst, F. (1979), Discrete-symmetric dynamical systems at the main resonances with applications to axi-symmetric galaxies, Phil. Trans. Roy. Soc. London A, 290, 435–465.

    Article  MATH  Google Scholar 

  • Verhulst, F. (1980), Periodic solutions of continuous self-gravitating systems, Lecture Notes Math. 810 (Martini ed.), Springer-Verlag, Berlin etc.

    Google Scholar 

  • Volosov, V.M. (1962), Averaging in systems of ordinary differential equations, Russian Math. Surveys 17, 6, 1–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Weinstein, A. (1973), Normal modes for nonlinear Hamiltonian systems, Inven. Math. 20, 47–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Weinstein, A. (1978), Simple periodic orbits, in Topics in nonlinear dynamics, Am. Inst. Physics Conf. Proc. 46, 260–263. (Jorna, ed.).

    Google Scholar 

  • Williamson, J. (1936), On the algebraic problem concerning the normal form of linear dynamical systems, Am. J. Math. 58, 141–163.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Verhulst

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Verhulst, F. (1983). Asymptotic analysis of hamiltonian systems. In: Verhulst, F. (eds) Asymptotic Analysis II —. Lecture Notes in Mathematics, vol 985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062366

Download citation

  • DOI: https://doi.org/10.1007/BFb0062366

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12286-9

  • Online ISBN: 978-3-540-39612-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics