Skip to main content

Relativistic density functional theory

  • Chapter
  • First Online:
Density Functional Theory II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 181))

Abstract

An overview of relativistic density functional theory covering its foundations, the construction of explicit functionals and applications to spherical atoms is given. After a brief summary of the relevant field theoretical background we discuss the Hohenberg-Kohn theorem for quantum electrodynamical systems as well as the corresponding Kohn-Sham equations, emphasising in particular the renormalisation of ground state energies and currents required. We then outline the transition from the full quantum electrodynamical Kohn-Sham equations to the more practical variants which are actually used in applications. As an extension of the Kohn-Sham equations we also summarise the relativistic optimised-potential-method (OPM) which, in addition to the kinetic energy, also treats the exchange energy on the basis of Kohn-Sham orbitals. As far as the construction of explicit functionals is concerned, we review the local density approximation (LDA) and the weighted density approximation (WDA) for the exchange-correlation energy as well as the gradient expansion of the kinetic energy, again addressing in detail questions of renormalisation. The relativistic corrections to the ground state, single particle and exchange energies as well as exchange potentials of atoms are then examined within the exchange-only limit of the no-sea approximation to the full relativistic Kohn-Sham equations, comparing the LDA and the WDA with the results obtained by the relativistic OPM. In addition, we investigate transverse exchange and correlation contributions within the LDA by comparison with quantum chemical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61: 689

    Article  Google Scholar 

  2. Becke AD, (1992) J Chem Phys 96: 2155

    Article  Google Scholar 

  3. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98: 5612

    Article  Google Scholar 

  4. Gross EKU, Dreizler RM (eds) (1995) Density Functional Theory. NATO ASI Series B, Vol 337, Plenum, New York

    Google Scholar 

  5. Hohenberg P, Kohn W (1964) Phys Rev 136 B: 864

    Article  Google Scholar 

  6. Kohn W, Sham LJ (1965) Phys Rev 140 A: 1133

    Article  Google Scholar 

  7. Eliav E, Kaldor U, Ishikawa Y (1994) Phys Rev A 49: 1724

    Google Scholar 

  8. Pyykkö P (1988) Chem Rev 88: 563

    Article  Google Scholar 

  9. Pepper M, Bursten BE (1991) Chem Rev 91: 719

    Article  Google Scholar 

  10. Becke AD (1988) Phys Rev A 38: 3098

    Google Scholar 

  11. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic Structure of Solids 1991. Akademie Verlag, Berlin

    Google Scholar 

  12. Vallarta MS, Rosen N (1932) Phys Rev 41: 708

    Article  Google Scholar 

  13. Jensen H (1933) Z Phys 82: 794

    Article  Google Scholar 

  14. Thomas LH (1927) Proc Cambridge Phil Soc 23: 542

    Google Scholar 

  15. Fermi E (1928) Z Phys 48: 73

    Article  Google Scholar 

  16. Gross EKU, Dreizler RM (1981) Phys Lett 81A: 447

    Google Scholar 

  17. Rajagopal AK, Callaway J (1973) Phys Rev B 7: 1912

    Google Scholar 

  18. Rajagopal AK (1978) J Phys C 11: L943

    Google Scholar 

  19. MacDonald AH, Vosko SH (1979) J Phys C 12: 2977

    Google Scholar 

  20. Malzacher P, Dreizler RM (1986) Z Phys D 2: 37

    Google Scholar 

  21. Engel E, Dreizler RM (1987) Phys Rev A 35: 3607

    Google Scholar 

  22. Engel E, Müller H, Speicher C, Dreizler RM (1995) In: Ref. [4], p 65

    Google Scholar 

  23. Liberman D, Waber JT, Cromer DT (1965) Phys Rev 137 A: 27

    Article  Google Scholar 

  24. Andersen OK (1970) Phys Rev B 2: 883

    Google Scholar 

  25. Ramana MV, Rajagopal AK (1983) Adv Chem Phys 54: 231

    Google Scholar 

  26. Itzykson C, Zuber J-B (1980) Quantum Field Theory. McGraw-Hill, New York

    Google Scholar 

  27. Källén AOG (1958) In: Handbuch der Physik, Band V, Teil 1. Springer, Berlin

    Google Scholar 

  28. Schmutzer E (1972) Symmetrien und Erhaltungssätze der Physik. Akademie, Berlin

    Google Scholar 

  29. Bjorken JD, Drell SD (1965) Relativistic Quantum Fields. McGraw-Hill, New York, chap 14.6

    Google Scholar 

  30. Ramana MV, Rajagopal AK (1981) J Phys C 14: 4291

    Google Scholar 

  31. Plunien G, Müller B, Greiner W (1986) Phys Rep 134: 87

    Article  Google Scholar 

  32. Rafelski J, Fulcher LP, Klein A (1978) Phys Rep 38C: 227

    Article  Google Scholar 

  33. Greiner W, Müller B, Rafelski J (1985) Quantum Electrodynamics of Strong Fields. Springer, Berlin

    Google Scholar 

  34. Schweber SS (1966) Relativistic Quantum Field Theory. Harper, New York

    Google Scholar 

  35. Shadwick BA, Talman JD, Norman MR (1989) Comp Phys Commun 54: 95

    Article  Google Scholar 

  36. Engel E, Keller S, Facco Bonetti A, Müller H, Dreizler RM (1995) Phys Rev A 52: 2750

    Google Scholar 

  37. Vignale G, Rasolt M (1987) Phys Rev Lett 59: 2360

    Article  PubMed  Google Scholar 

  38. Vignale G, Rasolt M (1988) Phys Rev B 37: 10685

    Google Scholar 

  39. For recent comparisons of QED results for atomic systems with experimental data see eg Chen MH, Cheng KT, Johnson WR (1993) Phys Rev A 47: 3692; Riis E, Sinclair AG, Poulsen O, Drake GWF, Rowley WRC, Levick AP (1994) Phys Rev A 49: 207

    Google Scholar 

  40. Ramana MV, Rajagopal AK (1979) J Phys C 12: L845

    Google Scholar 

  41. MacDonald AH (1983) J Phys C 16: 3869

    Google Scholar 

  42. Xu BX, Rajagopal AK, Ramana MV (1984) J Phys C 17: 1339

    Google Scholar 

  43. Eschrig H, Seifert G, Ziesche P (1985) Solid State Commun 56: 777

    Article  Google Scholar 

  44. Diener G, Gräfenstein J (1989) J Phys Condens Matter 1: 8445

    Article  Google Scholar 

  45. Nagy A (1994) Phys Rev A 49: 3074

    Google Scholar 

  46. Engel E, Dreizler RM (1988) Phys Rev A 38: 3909

    Google Scholar 

  47. Dreizler RM, Gross EKU (1990) Density Functional Theory. Springer, Berlin

    Google Scholar 

  48. Mann JB, Johnson WR (1971) Phys Rev A 4: 41

    Google Scholar 

  49. Parpia FA, Johnson WR (1984) J Phys B 17: 531

    Google Scholar 

  50. Parpia FA, Johnson WR (1983) J Phys B 16: L375

    Google Scholar 

  51. Parpia FA, Johnson WR (1983) Phys Lett 99 A: 172

    Google Scholar 

  52. Talman JD, Shadwick WF (1976) Phys Rev A 14: 36

    Google Scholar 

  53. Sharp RT, Horton GK (1953) Phys Rev 90: 317

    Article  Google Scholar 

  54. Sahni V, Gruenebaum J, Perdew JP (1982) Phys Rev B 26: 4371

    Google Scholar 

  55. Langreth DC, Mehl MJ (1983) Phys Rev B 28: 1809

    Google Scholar 

  56. Sham LJ (1985) Phys Rev B 32: 3876

    Google Scholar 

  57. Engel E, Chevary JA, Macdonald LD, Vosko SH (1992) Z Phys D 23: 7

    Google Scholar 

  58. Krieger JB, Li Y, Iafrate GJ (1992) Phys Rev B 45: 101

    Google Scholar 

  59. Engel E, Vosko SH (1993) Phys Rev A 47: 2800

    Google Scholar 

  60. Engel E, Vosko SH (1994) Phys Rev A 50: 10498

    Google Scholar 

  61. Kotani T (1994) Phys Rev B 50: 14816

    Google Scholar 

  62. Kotani T (1995) Phys Rev Lett 74: 2989

    Article  PubMed  Google Scholar 

  63. Bylander DM, Kleinman L (1995) Phys Rev Lett 74: 3660

    Article  PubMed  Google Scholar 

  64. Grabo T, Gross EKU (1995) 240: 141 Chem Phys Lett

    Article  Google Scholar 

  65. Krieger JB, Li Y, Iafrate GJ (1990a) Phys Lett 146 A: 256

    Google Scholar 

  66. Krieger JB, Li Y, Iafrate GJ (1990b) Phys Lett 148 A: 470

    Google Scholar 

  67. Li Y, Krieger JB, Norman MR, Iafrate GJ (1991) Phys Rev B 44: 10437

    Google Scholar 

  68. Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) Comp Phys Commun 55: 425

    Article  Google Scholar 

  69. In all our calculations the nuclei were represented by uniformly charged spheres with nuclear radii given by R nucl =1.0793 A 1/3+0.73587 fm, A being the atomic mass (weighted by isotopic abundances) taken from Table III.7 of Ref. [128] unless explicitly stated otherwise. The speed of light has been set to c=137.0359895.

    Google Scholar 

  70. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58: 1200

    Google Scholar 

  71. Perdew JP, Zunger A (1981) Phys Rev B 23: 5048

    Google Scholar 

  72. Perdew JP, Wang Y (1991) Phys Rev B 45: 13244

    Google Scholar 

  73. Ortiz G, Ballone P (1994) Phys Rev B 50: 1391

    Google Scholar 

  74. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45: 566

    Article  Google Scholar 

  75. Ma S-K, Brueckner KA (1968) Phys Rev 165: 18

    Article  Google Scholar 

  76. Sham LJ (1971) In: Marcus PM, Janak JF, Williams AR (eds) Computational Methods in Band Theory. Plenum, New York, p 458

    Google Scholar 

  77. Geldart DJW, Rasolt M (1976) Phys Rev B 13: 1477

    Google Scholar 

  78. Antoniewicz PR, Kleinman L (1985) Phys Rev B 31: 6779

    Google Scholar 

  79. Kleinman L, Lee S (1988) Phys Rev B 37: 4634

    Google Scholar 

  80. Chevary JA, Vosko SH (1990) Phys Rev B 42: 5320

    Google Scholar 

  81. Engel E, Vosko SH (1990) Phys Rev B 42: 4940; Phys Rev B 44: 1446(E)

    Google Scholar 

  82. Bagno P, Jepsen O, Gunnarsson O (1989) Phys Rev B 40: 1997

    Google Scholar 

  83. Langreth DC, Mehl MJ (1981) Phys Rev Lett 47: 446

    Article  Google Scholar 

  84. Becke AD (1986) J Chem Phys 84: 4524

    Article  Google Scholar 

  85. Perdew JP, Wang Y (1986) Phys Rev B 33: 8800

    Google Scholar 

  86. Perdew JP (1986) Phys Rev B 33: 8822; Phys Rev B 34: 7406(E)

    Google Scholar 

  87. Garcia A, Elsässer Ch, Zhu J, Louie SG, Cohen ML (1992) Phys Rev B 46: 9829; Phys Rev B 47: 4150(E)

    Google Scholar 

  88. Singh DJ, Ashkenazi J (1992) Phys Rev B 46: 11570

    Google Scholar 

  89. Singh DJ (1993) Phys Rev B 48: 14099

    Google Scholar 

  90. Dufek P, Blaha P, Sliwko V, Schwarz K (1994) Phys Rev B 49: 10170

    Google Scholar 

  91. Dufek P, Blaha P, Schwarz K (1994) Phys Rev B 50: 7279

    Google Scholar 

  92. Keller S (1988) Diploma thesis, Frankfurt/Main

    Google Scholar 

  93. Akhiezer IA, Peletminskii SV (1960) Sov Phys JETP 11: 1316

    Google Scholar 

  94. Zapolsky HS (1960) Cornell University LNS Report. unpublished

    Google Scholar 

  95. Jancovici B (1962) Nuovo Cim XXV: 428

    Google Scholar 

  96. Freedman BA, McLerran LD (1977) Phys Rev D 16: 1130, 1147, 1169

    Google Scholar 

  97. Ramana MV, Rajagopal AK, Johnson WR (1982) Phys Rev A 25: 96

    Google Scholar 

  98. Ramana MV, Rajagopal AK (1981) Phys Rev A 24: 1689

    Google Scholar 

  99. Müller H, Serot BD (1995) unpublished

    Google Scholar 

  100. Gunnarsson O, Jonson M, Lundqvist BI (1977) Solid State Commun 24: 765

    Article  Google Scholar 

  101. Alonso JA, Girifalco LA (1978) Phys Rev B 17: 3735

    Google Scholar 

  102. Ellis DE (1977) J Phys B 10: 1

    MathSciNet  Google Scholar 

  103. A simple scheme to overcome this problem has been suggested in Przybylski H, Borstel G (1984) Solid State Commun 49: 317; Solid State Commun 52: 713

    Article  Google Scholar 

  104. Das MP, Ramana MV, Rajagopal AK (1980) Phys Rev A 22: 9

    Google Scholar 

  105. MacDonald AH, Daams JM, Vosko SH, Koelling DD (1981) Phys Rev B 23: 6377

    Google Scholar 

  106. Engel E, Vosko SH (1993) Phys Rev B 47: 13164

    Google Scholar 

  107. Davidson ER, Hagstrom SA, Chakravorty SJ, Meiser Umar V, Froese Fischer C (1991) Phys Rev A 44: 7071

    Google Scholar 

  108. Ishikawa Y, Koc K (1994) Phys Rev A 50: 4733

    Google Scholar 

  109. Chakravorty SJ, Gwaltney SR, Davidson ER, Parpia FA, Froese Fischer C (1993) Phys Rev A 47: 3649

    Google Scholar 

  110. Stroucken HJAC, Dreizler RM (1991) Phys Rev A 43: 3401

    Google Scholar 

  111. Rieger MM, Vogl P (1995) Phys Rev A 52: 282

    Google Scholar 

  112. t'Hooft G, Veltman M (1972) Nucl Phys B 44: 189

    Article  Google Scholar 

  113. Landsman NP, van Weert ChG (1987) Phys Rep 145: 141

    Article  Google Scholar 

  114. Lim K, Horowitz CJ (1989) Nucl Phys A 501: 729

    Google Scholar 

  115. Källén G, Sabry A (1955) Dan Mat Fys Medd 29: No.17

    Google Scholar 

  116. Barbieri R, Remiddi E (1973) Nuovo Cim A 13: 99

    Google Scholar 

  117. Kapusta JI (1989) Finite-temperature Field Theory. Cambridge Univ. Press, Cambridge

    Google Scholar 

  118. Braaten E, Pisarski RD (1990) Nucl Phys B 337: 569

    Article  Google Scholar 

  119. Chin SA (1977) Ann Phys (NY) 108: 301

    Article  Google Scholar 

  120. Brovman EG, Kagan Y (1969) Zh Eksp Teor Fiz 57: 1329 [Sov Phys JETP 30: 721 (1970)]

    Google Scholar 

  121. Engel E (1995) Phys Rev A 51: 1159

    Google Scholar 

  122. Müller H, Engel E, Dreizler RM (1989) Phys Rev A 40: 5542

    Google Scholar 

  123. Engel E, Müller H, Dreizler RM (1989) Phys Rev A 39: 4873

    Google Scholar 

  124. Pohlner WF, Dreizler RM (1991) Phys Rev A 44: 7165

    Google Scholar 

  125. Kirzhnits DA (1967) Field Theoretical Methods in Many-Body Systems. Pergamon, London

    Google Scholar 

  126. Hodges CH (1973) Can J Phys 51: 1428

    Google Scholar 

  127. Jennings BK (1973) PhD Thesis, McMaster University; Brack M, Jennings BK, Chu YH (1976) Phys Lett 65B: 1

    Google Scholar 

  128. Hisaka K, et al. (Particle Data Group) (1992) Phys Rev D 45: Number 11, Part II

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. F. Nalewajski

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Engel, E., Dreizler, R.M. (1996). Relativistic density functional theory. In: Nalewajski, R.F. (eds) Density Functional Theory II. Topics in Current Chemistry, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0016642

Download citation

  • DOI: https://doi.org/10.1007/BFb0016642

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61092-2

  • Online ISBN: 978-3-540-49946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics