Skip to main content

Green Reactions Under Solvent-Free Conditions

  • Chapter
  • First Online:
Green Organic Reactions

Abstract

Green reaction under solvent-free conditions is considered as the golden achievement in the synthesis of different products. The twelve principles of “green chemistry” were formulated in the 1990s by Paul Anastas and John Warner. Accordingly, the synthesized products and related processes should comply with the twelve principles of green chemistry which offers better human health, cleaner earth, and the environment. This goal is achieved to a large extent through green chemistry under solvent-free conditions. This chapter describes the important reactions carried out in organic synthesis under solvent-free conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanderson K (2011) It’s not easy being green. Nature 469(7328):18

    Article  CAS  Google Scholar 

  2. Zeng J-W, Liu Y-C Hsieh P-A et al (2014) Metal-free cross-coupling reaction of aldehydes with disulfides by using DTBP as an oxidant under solvent-free conditions. Green Chem 16(5):2644–2652

    Google Scholar 

  3. Al-Shaal MG, Hausoul PJC, Palkovits R (2014) Efficient, solvent-free hydrogenation of α-angelica lactone catalysed by Ru/C at atmospheric pressure and room temperature. Chem Commun 50(71):10206–10209

    Article  CAS  Google Scholar 

  4. Chen L, Lemma BE, Rich JS et al (2014) Freedom: a copper-free, oxidant-free and solvent-free palladium catalysed homocoupling reaction. Green Chem 16(3):1101–1103

    Article  CAS  Google Scholar 

  5. Vidyacharan S, Shinde AH, Satpathi B et al (2014) A facile protocol for the synthesis of 3-aminoimidazo-fused heterocycles via the Groebke–Blackburn–Bienayme reaction under catalyst-free and solvent-free conditions. Green Chem 16(3):1168–1175

    Article  CAS  Google Scholar 

  6. Zhou WJ, Fang L et al (2014) Tunable catalysts for solvent-free biphasic systems: pickering interfacial catalysts over amphiphilic silica nanoparticles. J Am Chem Soc 136(13):4869–4872

    Article  CAS  Google Scholar 

  7. Sheldon RA (1996) Selective catalytic synthesis of fine chemicals: opportunities and trends. J Mol Catal A 107(1):75–83

    Article  CAS  Google Scholar 

  8. Eidi E, Kassaee MZ, Nasresfahani Z et al (2018) Synthesis of quinazolines over recyclable Fe3O4@SiO2-PrNH2-Fe3+ nanoparticles: a green, efficient, and solvent-free protocol. Appl Organomet Chem 32(12):e4573–e4582

    Article  CAS  Google Scholar 

  9. Mirjalili BBF, Imani M (2019) Fe3O4@NCs/BF0.2: a magnetic bio-based nanocatalyst for the synthesis of 2,3-dihydro-1H-perimidines. J Chin Chem Soc 66(11):1542–1549

    Google Scholar 

  10. Mouradzadegun A, Mostafavi MA, Ganjali MR (2019) A facile and green synthesis of 2,4,6-triarylpyridine derivatives using the modified mesoporous organic polymer based on calix [4]resorcinarene: as an efficient and reusable heterogeneous acidic catalyst. Kinet Catal 60(2):187–195

    Article  CAS  Google Scholar 

  11. Kooti M, Karimi M, Nasiri E (2018) A novel copper complex supported on magnetic reduced graphene oxide: an efficient and green nanocatalyst for the synthesis of 1-amidoalkyl-2-naphthol derivatives. J Nanopart Res 20(2):16–30

    Article  CAS  Google Scholar 

  12. Shaikh M, Singh SK, Khilari S et al (2018) Graphene oxide as a sustainable metal and solvent free catalyst for dehydration of fructose to 5-HMF: a new and green protocol. Catal Commun 106:64–67

    Article  CAS  Google Scholar 

  13. Hasanzadeh Banakar S, Dekamin MG, Yaghoubi A (2018) Selective and highly efficient synthesis of xanthenedione or tetraketone derivatives catalyzed by ZnO nanorod-decorated graphene oxide. New J Chem 42(17):14246–14262

    Article  CAS  Google Scholar 

  14. Mousavi SR, Rashidi Nodeh H, Zamiri Afshari E et al (2019) Graphene oxide incorporated strontium nanoparticles as a highly efficient and green acid catalyst for one-pot synthesis of tetramethyl-9-aryl-hexahydroxanthenes and 13-Aryl-5H-dibenzo[b, i]xanthene-5,7,12,14(13H)-tetraones under solvent-free conditions. Catal Lett 149(4):1075–1086

    Article  CAS  Google Scholar 

  15. Naeimi H, Zarabi MF (2018) One pot synthesis of aminonaphthoquinone derivatives using Cu(II) immobilized on hyperbranched polyglycerol functionalized graphene oxide as a reusable catalyst under solvent-free conditions. Tetrahedron 74(19):2314–2323

    Article  CAS  Google Scholar 

  16. Eisavi R, Ahmadi F, Ebadzade B et al (2017) A green method for solvent-free conversion of epoxides to thiiranes using NH4SCN in the presence of NiFe2O4 and MgFe2O4 magnetic nanocatalysts. J Sulphur Chem 38(6):614–624

    Article  CAS  Google Scholar 

  17. Dhakar A, Goyal R, Rajput A et al (2019) Multicomponent synthesis of 4H-pyran derivatives using KOH loaded calcium oxide as catalyst in solvent free condition. Curr Chem Lett 8(3):125–136

    Article  Google Scholar 

  18. Rawat M, Rawat DS (2018) Copper oxide nanoparticle catalysed synthesis of imidazo[1,2-a]pyrimidine derivatives, their optical properties and selective fluorescent sensor towards zinc ion. Tetrahedron Lett 59(24):2341–2346

    Article  CAS  Google Scholar 

  19. Eskandari K, Khodabakhshi S (2018) An eco-friendly solvent-free synthesis of trisubstituted methane derivatives catalyzed by magnetic iron oxide nanoparticles as a highly efficient and recyclable catalyst. Lett Org Chem 15(6):463–471

    Article  CAS  Google Scholar 

  20. Singaram K, Marimuthu D, Baskaran S et al (2017) Molecular dynamics and biological evaluation of 2-chloro-7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidine derivatives against breast cancer. Comb Chem High Throughput Screen 20(8):703–712

    Article  CAS  Google Scholar 

  21. Xie F, Zhao H, Zhao L et al (2009) Synthesis and biological evaluation of novel 2,4,5-substituted pyrimidine derivatives for anticancer activity. Bioorg Med Chem Lett 19(1):275–278

    Article  CAS  Google Scholar 

  22. Dam B, Jamatia R, Gupta A et al (2017) Metal-free greener syntheses of pyrimidine derivatives using a highly efficient and reusable graphite oxide carbocatalyst under solvent-free reaction conditions. ACS Sustain Chem Eng 12:11459–11469

    Article  CAS  Google Scholar 

  23. Prakash O, Bhardwaj V, Kumar R et al (2004) Organoiodine (III) mediated synthesis of 3-aryl/hetryl-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidines as antibacterial agents. Eur J Med Chem 12:1073–1077

    Article  CAS  Google Scholar 

  24. Lee HW, Kim BY, Ahn JB et al (2005) Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur J Med Chem 40(9):862–874

    Article  CAS  Google Scholar 

  25. Ram V, Haque N, Guru P (1992) Chemotherapeutic agents XXV: synthesis and leishmanicidal activity of carbazolylpyrimidines. Elsevier Masson

    Google Scholar 

  26. Juby PF, Hudyma TW, Brown M et al (1979) Antiallergy agents. 1. 1,6-Dihydro-6-oxo-2-phenylpyrimidine-5-carboxylic acids and esters. J Med Chem 22(3):263–269

    Google Scholar 

  27. Agarwal N, Raghuwanshi SK, Upadhyay DN et al (2000) Suitably functionalised pyrimidines as potential antimycotic agents. Bioorg Med Chem Lett 10(8):703–706

    Article  CAS  Google Scholar 

  28. Smith PAS, Kan RO (1964) Cyclization of isothiocyanates as a route to phthalic and homophthalic acid derivatives. J Org Chem 29(8):2261–2265

    Article  CAS  Google Scholar 

  29. Vega S, Alonso J, Diaz JA et al (1990) Synthesis of 3-substituted-4-phenyl-2-thioxo-1,2,3,4,5,6,7,8-octahydrobenzo[4,5]thieno[2,3-á]pyrimidines. J Heterocycl Chem 27(2):269–273

    Article  CAS  Google Scholar 

  30. Tani J, Yamada Y, Oine T et al (1979) Studies on biologically active halogenated compounds. 1. Synthesis and central nervous system depressant activity of 2-(fluoromethyl)-3-aryl-4(3H)-quinazolinone derivatives. J Med Chem 22(1):95–99

    Google Scholar 

  31. Vanderhaeghe H, Claesen M (1959) Pyrimidines IV—Hydrazinopyrimidines 68(1–3):30–46

    Google Scholar 

  32. Van Leeuwen R, Katlama C, Kitchen V et al (1995) Evaluation of safety and efficacy of 3TC (lamivudine) in patients with asymptomatic or mildly symptomatic human immunodeficiency virus infection: a phase I/II study. J Infect Dis 171(5):1166–1171

    Article  Google Scholar 

  33. Devine BL, Fife R, Trust PM (1977) Minoxidil for severe hypertension after failure of other hypotensive drugs. Be Med J 2(6088):667

    Article  CAS  Google Scholar 

  34. Waghmare AS, Pandit SS, Suryawanshi DM (2018) DABCO catalyzed green and efficient synthesis of 2-Amino-4H-Pyrans and their biological evaluation as antimicrobial and anticancer agents. Comb Chem High Throughput Screen 21(4):254–261

    Article  CAS  Google Scholar 

  35. Rakhtshah J, Salehzadeh S, Zolfigol MA et al (2017) Mn(III)–pentadentate schiff base complex supported on multi-walled carbon nanotubes as a green, mild and heterogeneous catalyst for the synthesis of tetrahydrobenzo[b]pyrans via tandem Knoevenagel-Michael cyclocondensation reaction. Appl Organomet Chem 31(9):e3690–e3699

    Article  CAS  Google Scholar 

  36. Ghasemzadeh MA, Elyasi Z (2017) Co3O4 nanoparticles as a robust and recoverable catalyst for one-pot synthesis of polyhydroquinolines and tetrahydrobenzopyrans. Iran J Catal 7(1):75–83

    CAS  Google Scholar 

  37. Jazinizadeh T, Maghsoodlou MT, Heydari R et al (2017) Na2EDTA: an efficient, green and reusable catalyst for the synthesis of biologically important spirooxindoles, spiroacenaphthylenes and spiro-2-amino-4H-pyrans under solvent-free conditions. J Iran Chem Soc 14(10):2117–2125

    Article  CAS  Google Scholar 

  38. Thwin M, Mahmoudi B, Ivaschuk OA et al (2014) An efficient and recyclable nanocatalyst for the green and rapid synthesis of biologically active polysubstituted pyrroles and 1,2,4,5-tetrasubstituted imidazole derivatives. RSC Adv 9(28):15966–15975

    Article  Google Scholar 

  39. Novanna M, Kannadasan S, Shanmugam P (2019) Phosphotungstic acid mediated, microwave assisted solvent-free green synthesis of highly functionalized 2ˈ-spiro and 2, 3-dihydro quinazolinone and 2-methylamino benzamide derivatives from aryl and heteroaryl 2-amino amides. Tetrahedron Lett 60(2):201–206

    Article  CAS  Google Scholar 

  40. Gajaganti S, Kumari S, Kumar D et al (2018) An efficient, green, and solvent-free multi-component synthesis of benzimidazolo/benzothiazolo quinazolinone derivatives using Sc (OTf)3 catalyst under controlled microwave irradiation. J Heterocycl Chem 55(11):2578–2584

    Article  CAS  Google Scholar 

  41. Sibous S, Ghailane T, Houda S (2017) Green and efficient method for the synthesis of 1,5-benzodiazepines using phosphate fertilizers as catalysts under solvent-free conditions. Mediterr J Chem 6(3):53–59

    Article  CAS  Google Scholar 

  42. Sonyanaik B, Ashok K, Rambabu S et al (2018) Facile one pot multi-component solvent-free synthesis of 2,4,5-trisubstituted imidazoles using “green” and expeditious ionic liquid catalyst under microwave irradiation. Russ J Gen Chem 88(3):537–540

    Article  CAS  Google Scholar 

  43. Selvakumar K, Shanmugaprabha T, Kumaresan M et al (2017) One-pot multi-component synthesis of N, N′-alkylidene bisamides and imidazoles using heteropoly-11-tungsto-1-vanadophosphoric acid supported on natural clay as catalyst: a green approach. Synth Commun 47(22):2115–2126

    Article  CAS  Google Scholar 

  44. Sarkar A, Santra S, Kundu SK et al (2016) A decade update on solvent and catalyst-free neat organic reactions: a step forward towards sustainability. Green Chem 18(16):4475–4525

    Article  CAS  Google Scholar 

  45. Kukhar VP, Hudson HJA (eds.) (2000) Aminophosphonic and aminophosphinic acids and their derivatives as agrochemicals. Wiley, VCH Wieheim Germany, pp 443–482

    Google Scholar 

  46. Sudileti M, Chintha V, Nagaripati S et al (2019) Green synthesis, molecular docking, anti-oxidant and anti-inflammatory activities of α-aminophosphonates. Med Chem Res 28(10):1740–1754

    Article  CAS  Google Scholar 

  47. Tellamekala S, Gundluru M, Sarva S et al (2019) Meglumine sulfate-catalyzed one-pot green synthesis and antioxidant activity of α-aminophosphonates. Synth Commun 49(4):563–575

    Article  CAS  Google Scholar 

  48. Sreelakshmi P, Santhisudha S, Reddy GR et al (2016) Nano-Cuo–Au-catalyzed solvent-free synthesis of α-aminophosphonates and evaluation of their antioxidant and α-glucosidase enzyme inhibition activities. Synth Commun 48(10):1148–1163

    Article  CAS  Google Scholar 

  49. Keglevich G, Bálint EJM (2012) Kabachnik-Fields React Mech Synth Use 17(11):12821–12835

    CAS  Google Scholar 

  50. Guezane-Lakoud S, Toffano M, Aribi-Zouioueche L (2017) Promiscuous lipase catalyzed a new P-C bond formation: green and efficient protocol for one-pot synthesis of α-aminophosphonates. Heteroatom Chem 28(6):e21408–e21418

    Article  CAS  Google Scholar 

  51. Esmaeilpour M, Zahmatkesh S, Javidi J et al (2017) A green one-pot three-component synthesis of α-aminophosphonates under solvent-free conditions and ultrasonic irradiation using Fe3O4@SiO2-imid-PMAn as magnetic catalyst. Phosphorus, Sulfur Silicon Relat Elem 192(5):530–537

    Article  CAS  Google Scholar 

  52. Poola S, Nadiveedhi MR, Sarva S et al (2019) Nano Sb2O3 catalyzed green synthesis, cytotoxic activity, and molecular docking study of novel α-aminophosphonates. Med Chem Res 28(4):528–544

    Article  CAS  Google Scholar 

  53. Mirhosseini-Eshkevari B, Esnaashari M, Ghasemzadeh MA (2019) Novel brönsted acidic ionic liquids confined in UiO-66 nanocages for the synthesis of dihydropyrido[2,3-d]pyrimidine derivatives under solvent-free conditions. ACS Omega 4(6):10548–10557

    Article  CAS  Google Scholar 

  54. Abdollahi-Basir MH, Shirini F, Tajik H et al (2019) MIL-53(Fe): introduction of a new catalyst for the synthesis of Pyrimido[4,5-d]pyrimidine derivatives under solvent-free conditions. J Mol Struct 1197:318–325

    Google Scholar 

  55. Afradi N, Foroughifar N, Pasdar H et al (2019) Aspartic-acid-loaded starch-functionalized Mn–Fe–Ca ferrite magnetic nanoparticles as novel green heterogeneous nanomagnetic catalyst for solvent-free synthesis of dihydropyrimidine derivatives as potent antibacterial agents. Res Chem Intermed 45(5):3251–3271

    Article  CAS  Google Scholar 

  56. Tamuli KJ, Dutta D, Nath S et al (2017) A greener and facile synthesis of imidazole and dihydropyrimidine derivatives under solvent-free condition using nature-derived catalyst. Chem Sel 2(26):7787–7791

    CAS  Google Scholar 

  57. Ahmadi M, Moradi L, Sadeghzadeh M (2019) MWCNTs@NHBut/PTA: new efficient solid acid catalyst for solvent free synthesis of benzochromenopyrimidines. Appl Organomet Chem 33(8)

    Google Scholar 

  58. Al-Bogami AS, Saleh TS, Moussa TA (2018) A green synthesis, antimicrobial activity and cytotoxicity of novel fused pyrimidine derivatives possessing a trifluoromethyl moiety. Chem Sel 3(28):8306–8311

    Google Scholar 

  59. Daraie M, Heravi MM (2019) as a new biocompatible polymer supported nanocatalyst for the synthesis of chromeno[2,3-d] pyrimidine-diones through a novel and efficient pathway. Can J Chem 97(11):772–779

    Article  CAS  Google Scholar 

  60. Farahi M, Karami B, Banaki Z et al (2017) TSA-catalyzed regioselective synthesis of medicinally important 4-aryl-substituted dihydropyrimidine derivatives fused to pyrazole and triazole scaffolds via an efficient and green domino reaction. Monatsh Chem 148(8):1469–1475

    Article  CAS  Google Scholar 

  61. Firoozpour L, Yahyavi H, Ejtemaei R (2018) A one-pot, three-component, solvent-free synthesis of novel 6 h-chromeno[3’,4’:5,6]pyrido[2,3-d]pyrimidine-triones under microwave irradiation. J Chem Res 42(12):604–607

    Article  Google Scholar 

  62. Jannati S, Esmaeili AA (2017) An efficient one-pot synthesis of highly functionalized benzylpyrazolyl pyrido[1,2-a]pyrimidine derivatives using CuFe2O4 nanoparticles under solvent-free conditions. Res Chem Intermed 43(12):6817–6833

    Article  CAS  Google Scholar 

  63. Kumari S, Kumar D, Gajaganti S et al (2019) Sc(OTf)3 catalysed multicomponent synthesis of chromeno[2,3-d]pyrimidinetriones under solvent-free condition. Synth Commun 49(3):431–443

    Article  CAS  Google Scholar 

  64. Mahmoud NFH, El-Saghier AM (2019) Multi-component reactions, solvent-free synthesis of substituted pyrano-pyridopyrimidine under different conditions using ZnO nanoparticles. J Heterocycl Chem 56(6):1820–1824

    Article  CAS  Google Scholar 

  65. Reddy MV, Byeon KR, Park SH et al (2017) Polyethylene glycol methacrylate-grafted dicationic imidazolium-based ionic liquid: Heterogeneous catalyst for the synthesis of aryl-benzo[4,5]imidazo[1,2-a]pyrimidine amines under solvent-free conditions. Tetrahedron 73(35):5289–5296

    Article  CAS  Google Scholar 

  66. Rigi F, Shaterian HR (2017) Silica-supported ionic liquids prompted one-pot four-component synthesis of pyrazolopyranopyrimidines, 3-methyl-4-aryl-4,5-dihydro-1H-pyrano[2,3-c]pyrazol-6-ones, and 1,6-diamino-2-oxo-1,2,3,4-tetrahydropyridine-3,5-dicarbonitriles. Polycyclic Aromat Compd 37(4):314–326

    Article  CAS  Google Scholar 

  67. Rather RA, Siddiqui ZN (2018) Synthesis, characterization and application of Nd-Salen schiff base complex Immobilized Mesoporous Silica in solvent free synthesis of pyranopyrazoles. J Organomet Chem 868:164–174

    Article  CAS  Google Scholar 

  68. Yue C, Mao A, Wei Y et al (2008) Knoevenagel condensation reaction catalyzed by task-specific ionic liquid under solvent-free conditions. Catalysis Comm 9(7):1571–1574

    Article  CAS  Google Scholar 

  69. Mather BD, Viswanathan K, Miller KM et al (2006) Michael addition reactions in macromolecular design for emerging technologies. Prog Ploy Sci 31(5):487–531

    Article  CAS  Google Scholar 

  70. Estévez V, Villacampa M, Menéndez JC (2014) Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem Soc Rev 43(13):4633–4657

    Article  Google Scholar 

  71. Balu Atar A, Han E, Sohn DH (2019) A solvent and transition metal-free, highly efficient Brønsted acidic ionic liquid promoted one-potthree-component reactions for the synthesis of tetrasubstituted pyrroles. Synth Commun 49(9):1181–1192

    Article  CAS  Google Scholar 

  72. Hamrahian SA, Rakhtshah J, Mousavi Davijani et al (2018) Copper Schiff base complex immobilized on silica-coated Fe3O4 nanoparticles: a recoverable and efficient catalyst for synthesis of polysubstituted pyrroles. Appl Organomet Chem 32 (10)

    Google Scholar 

  73. Shalini K, Sharma PK, Kumar N (2010) Imidazole and its biological activities: a review. Der Chemica Sinica 1(3):36–47

    Google Scholar 

  74. Feizabad FK, Khandan-Barani K, Hassanabadi A (2017) Glutamic acid as an efficient and green catalyst for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles under thermal, solvent-free conditions. J Chem Res 41(11):673–675

    Article  CAS  Google Scholar 

  75. Nejatianfar M, Akhlaghinia B Jahanshahi R (2008) Cu(II) immobilized on guanidinated epibromohydrin-functionalized γ-Fe2O3@TiO2 (γ-Fe2O3@TiO2-EG-Cu(II)): a highly efficient magnetically separable heterogeneous nanocatalyst for one-pot synthesis of highly substituted imidazoles. Appl Organomet Chem 32(2):e4095–e4196

    Google Scholar 

  76. Cortezano-Arellano O, Hernández-Gasca MA, Ángeles-Beltrán D et al (2018) Diastereoselective synthesis of propargylamines catalyzed by Cu-MCM-41. Tetrahedron Lett 59(25):2403–2406

    Article  CAS  Google Scholar 

  77. Noreña-Franco L, Hernandez-Perez I, Aguilar-Pliego J et al (2002) Selective hydroxylation of phenol employing Cu–MCM-41 catalysts. Catal Today 75(1):189–195

    Article  Google Scholar 

  78. Layek S, Agrahari B, Kumari S et al (2018) [Zn(l-proline)2] catalyzed one-pot synthesis of propargylamines under solvent-free conditions. Catal Lett 148(9):2675–2682

    Article  CAS  Google Scholar 

  79. Liu X, Tan X, Zhou Y (2019) Cu0NPs@CMC:an efficient recoverable nanocatalyst for decarboxylative A3 and A3 couplings under neat condition. Res Chem Intermed 45(6):3359–3378

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We highly appreciate the support of the Research Council of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghodsi Mohammadi Ziarani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammadi Ziarani, G., Mohajer, F., Moradi, R. (2021). Green Reactions Under Solvent-Free Conditions. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_5

Download citation

Publish with us

Policies and ethics