Skip to main content

Green Nanocatalysts in Organic Synthesis

  • Chapter
  • First Online:
Green Organic Reactions

Abstract

The recent international scenario highlights the importance to change synthetic methodologies toward a greener aspect. This involves also catalysis, and in particular nanocatalysis, in which the catalytic specie is nanostructured. In this context, synthetic organic chemistry developed new strategies in order to decrease the environmental impact of synthetic processes, leading to a sustainable chemistry. The strategies used consist of the realization of catalysts as nanoreactors, self-assembled, or covalently assembled, able to catalyze reaction inside a new nanospace, similar to the catalytic site of enzymes, or on the shell covered by the catalyst. The main goals of this approach is (i) to obtain an easier recovery of the catalyst; (ii) to increase the stability of the catalyst; (iii) to reduce the reaction time; and (iv) to lead the formation of the products in high yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bitter H (2017) Heterogeneous catalyst. In: Kamer PCJ, Dieter V, Thybaut TW (Eds.) Contemporary catalysis, pp 177–188

    Google Scholar 

  2. Pagliaro M, Pandaru V, Ciriminna R, Béland F, Demma Carà P (2012) Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions. Chem Cat Chem 4:432–445

    CAS  Google Scholar 

  3. Lu Y, Spyra P, Mei Y et al (2007) Composite hydrogels: robust carriers for catalytic nanoparticles. Macromol Chem Phys 208:254–261

    Article  CAS  Google Scholar 

  4. Gangemi CMA, Pappalardo A, Trusso Sfrazzetto G (2015) Assembling of supramolecular capsules with Resorcin[4]arene and Calix[n]arene building blocks. Curr Org Chem 19:2281–2308

    Article  CAS  Google Scholar 

  5. Kinghorn MJ, Valdivia-Berroeta GA, Chantry DR et al (2017) Proximity-induced reactivity and product selectivity with a rationally designed bifunctional peptide catalyst. ACS Catal 7:7704–7708

    Article  CAS  Google Scholar 

  6. Pappalardo A, Puglisi R, Sfrazzetto GT (2019) Catalysis inside supramolecular capsules: recent developments. Catalysts 9:630–650

    Article  CAS  Google Scholar 

  7. Khullar P, Singh V, Mahal A et al (2013) Block Copolymer Micelles as nanoreactors for self-assembled morphologies of gold nanoparticles. J Phys Chem B 117:3028–3039

    Article  CAS  Google Scholar 

  8. Dwars T, Paetzold E, Oehme G (2005) Reactions in Micellar systems. Angew Chem Int Ed 44:7174–7199

    Article  CAS  Google Scholar 

  9. Jain S, Bates FS (2003) On the origins of morphological complexity in block copolymer surfactants. Science 300:460–464

    Article  CAS  Google Scholar 

  10. Duplais C, Krasovskiy A, Wattenberg A et al (2010) Cross-couplings between benzylic and aryl halides “on water”: synthesis of diarylmethanes. Chem Commun 46:562–564

    Article  CAS  Google Scholar 

  11. Ballistreri FP, Gangemi CMA, Pappalardo A et al (2016) (Salen)Mn(III) catalyzed asymmetric epoxidation reactions by hydrogen peroxide in water: a green protocol. Int J Mol Sci 17:1112–1120

    Article  CAS  Google Scholar 

  12. Lipshutz BH, Ghorai S (2012) Organocatalysis in water at room temperature with in-flask catalyst recycling. Org Lett 14:422–425

    Article  CAS  Google Scholar 

  13. Ansari TN, Taussat A, Clark AH et al (2019) Insights on bimetallic micellar nanocatalysis for Buchwald−Hartwig aminations. ACS Catal 9:10389–10397

    Article  CAS  Google Scholar 

  14. Xiang F, Li B, Zhao P, Tan J, Yu Y, Zhanga S (2019) Copper(I)-chelated cross-linked cyclen micelles as a nanocatalyst for azide-alkyne cycloaddition in both water and cells. Adv Synth Catal 361:5057–5062

    Article  CAS  Google Scholar 

  15. Mayanka SA, Kaur N, Singh N, Jang DO (2017) A carbon quantum dot-encapsulated micellar reactor for the synthesis of chromene derivatives in water. Mol Catal 439:100–107

    Article  CAS  Google Scholar 

  16. Bahrami K, Khodaei MM, Meibodi FD (2016) Suzuki and heck cross‐coupling reactions using ferromagnetic nanoparticle‐supported palladium complex as an efficient and recyclable heterogeneous nanocatalyst in sodium dodecylsulfate micelles. Appl Organometal Chem 1–9

    Google Scholar 

  17. Hou S, Xie C, Yu F, Yuan B, Yu S (2016) Selective hydrogenation of α-pinene to cis-pinane over Ru nanocatalysts in aqueous micellar nanoreactors. RSC Adv 6:54806–54811

    Article  CAS  Google Scholar 

  18. Yu Y, Lin C, Li B et al (2016) Dendrimer-like core cross-linked micelle stabilized ultra-small gold nanoclusters as a robust catalyst for aerobic oxidation of α-hydroxy ketones in water. Green Chem 18:3647–3655

    Article  CAS  Google Scholar 

  19. Yang F, Gao S, Ding Y et al (2019) Excellent porous environmental nanocatalyst: tactically integrating size-confined highly active MnOx in nanospaces of mesopores enables the promotive catalytic degradation efficiency of organic contaminants. New J Chem 43:19020–19034

    Article  CAS  Google Scholar 

  20. Sanson C, Schatz C, Le Meins JF et al (2010) Biocompatible and biodegradable poly(trimethylene carbonate)-b-poly(l-glutamic acid) polymersomes: size control and stability. Langmuir 26:2751–2760

    Article  CAS  Google Scholar 

  21. Wang Z, van Oers MCM, Rutjes FPJT et al (2012) Polymersome colloidosomes for enzyme catalysis in a biphasic system. Angew Chem Int Ed 51:10746–10750

    Article  CAS  Google Scholar 

  22. van Oers MCM, Veldmate WS, van Hest JCM et al (2015) Aqueous asymmetric aldol reactions in polymersome membranes. Polym Chem 6:5358–5361

    Article  CAS  Google Scholar 

  23. Nallani M, de Hoog HPM, Cornelissen JJLM et al (2007) Polymersome nanoreactors for enzymatic ring-opening polymerization. Biomacromol 8:3723–3728

    Article  CAS  Google Scholar 

  24. Gräfe D, Gaitzsch J, Appelhans D et al (2014) Cross-linked polymersomes as nanoreactors for controlled and stabilized single and cascade enzymatic reactions. Nanoscale 6:10752–10761

    Article  CAS  Google Scholar 

  25. Dergunov SA, Khabiyev AT, Shmakov SN et al (2016) Encapsulation of homogeneous catalysts in porous polymer nanocapsules produces fast-acting selective nanoreactors. ACS Nano 10:11397–11406

    Article  CAS  Google Scholar 

  26. Amato ME, Ballistreri FP, D’Agata S et al (2011) Enantioselective molecular recognition of chiral organic ammonium ions and amino acids using Cavitand-Salen based receptors. Eur J Org Chem 2011:5674–5680

    Article  CAS  Google Scholar 

  27. Pappalardo A, Amato ME, Ballistreri FP et al (2012) Pair of diastereomeric uranyl salen cavitands displaying opposite enantiodiscrimination of α-amino acid ammonium salts. J Org Chem 77:7684–7687

    Article  CAS  Google Scholar 

  28. D’Urso A, Tudisco C, Ballistreri FP et al (2014) Enantioselective extraction mediated by a chiral cavitand–salen covalently assembled on a porous silicon surface. Chem Commun 50:4993–4996

    Article  Google Scholar 

  29. Zhu Y, Rebek J Jr, Yu Y (2019) Cyclizations catalyzed inside a hexameric resorcinarene capsule. Chem Commun 55:3573–3577

    Article  CAS  Google Scholar 

  30. Cavarzan A, Reek JNH, Trentin F, Scarso A, Strukul G (2013) Substrate selectivity in the alkyne hydration mediated by NHC–Au(I) controlled by encapsulation of the catalyst within a hydrogen bonded hexameric host. Catal Sci Technol 3:2898–2901

    Article  CAS  Google Scholar 

  31. La Sorella G, Sperni L, Strukul G et al (2015) Supramolecular encapsulation of neutral diazoacetate esters and catalyzed 1,3-dipolar cycloaddition reaction by a self-assembled hexameric capsule. Chem Cat Chem 7:291–296

    Google Scholar 

  32. Giust S, La Sorella G, Sperni L (2015) Substrate selective amide coupling driven by encapsulation of a coupling agent within a self-assembled hexameric capsule. Chem Commun 51:1658–1661

    Article  CAS  Google Scholar 

  33. Giust S, La Sorella G, Sperni L et al (2015) Supramolecular catalysis in the synthesis of substituted 1HTetrazoles from isonitriles by a self-assembled hexameric capsule. Asian J Org Chem 4:217–220

    Article  CAS  Google Scholar 

  34. La Sorella G, Sperni L, Strukul G et al (2016) Supramolecular activation of hydrogen peroxide in the selective sulfoxidation of thioethers by a self-assembled hexameric capsule. Adv Synth Catal 358:3443–3449

    Article  CAS  Google Scholar 

  35. La Manna P, Talotta C, Floresta G et al (2018) Mild Friedel-crafts reactions inside a hexameric resorcinarene capsule: C-Cl bond activation through hydrogen bonding to bridging water molecules. Angew Chem Int Ed 57:5423–5428

    Article  CAS  Google Scholar 

  36. La Manna P, De Rosa M, Talotta C et al (2018) The hexameric resorcinarene capsule as an artificial enzyme: ruling the regio and stereochemistry of a 1.3-dipolar cycloaddition between nitrones and unsaturated aldehydes. Org Chem Front 5:827–837

    Article  Google Scholar 

  37. Salunke BK, Sawant SS, Kang TK et al (2015) Potential of biosynthesized silver nanoparticles as nanocatalyst for enhanced degradation of cellulose by cellulase. J Nanomat 2015. Article ID: 289410

    Google Scholar 

  38. Pandey S, Do JY, Kim J et al (2020) Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver. Carbohyd Polym 230:115597

    Article  CAS  Google Scholar 

  39. Bronstein LM, Shifrina ZB (2009) Nanoparticles in dendrimers: from synthesis to application. Nanotechnol Russ 4:576–608

    Article  Google Scholar 

  40. Chung YM, Rhee HK (2003) Pt-Pd bimetallic nanoparticles encapsulated in dendrimer nanoreactor. Catal Lett 85:159–164

    Article  CAS  Google Scholar 

  41. Ornelas C, Aranzaes JR, Salmon L et al (2008) “Click” dendrimers: synthesis, redox sensing of pd(oac)2, and remarkable catalytic hydrogenation activity of precise pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers. Chem Eur J 14:50–64

    Article  CAS  Google Scholar 

  42. Ornelas C, Salmon L, Aranzaes JR et al (2007) Catalytically efficient palladium nanoparticles stabilized by “click” ferrocenyl dendrimers. Chem Commun 2007:4946–4948

    Article  CAS  Google Scholar 

  43. Clouet A, Darbre T, Reymond JL (2004) A combinatorial approach to catalytic peptide dendrimers. Angew Chem Int Ed 43:4612–4615

    Article  CAS  Google Scholar 

  44. Wang J, Zhou Y, Shao Y et al (2019) Chitosan–silica nanoparticles catalyst (M@CS–SiO2) for the degradation of 1,1-dimethylhydrazine. Res Chem Interm 45:1721–1735

    Article  CAS  Google Scholar 

  45. Ramazani A, Farshadi A, Mahyari A et al (2016) Synthesis of electron-poor N-Vinylimidazole derivatives catalyzed by Silica nanoparticles under solvent-free conditions. Int J Nano Dim 7:41–48

    CAS  Google Scholar 

  46. Maleki A (2012) Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron 68:7827–7833

    Article  CAS  Google Scholar 

  47. Sreedhar B, Radhika P, Neelima B et al (2007) Regioselective ring opening of epoxides with amines using monodispersed silica nanoparticles in water. J Mol Cat A Chem 272:159–163

    Article  CAS  Google Scholar 

  48. Ayati A, Ahmadpour A, Bamoharram FF et al (2014) A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 107:163–174

    Article  CAS  Google Scholar 

  49. Primo A, Corma A, García H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910

    Article  CAS  Google Scholar 

  50. Chang F, Kim H, Lee B et al (2010) Highly efficient solvent-free catalytic hydrogenation of solid alkenes and nitro-aromatics using Pd nanoparticles entrapped in aluminum oxy-hydroxide. Tetrahedron Lett 51:4250–4252

    Article  CAS  Google Scholar 

  51. Nadagouda MN, Polshettiwar V, Varma RS (2006) Self-assembly of palladium nanoparticles: synthesis of nanobelts, nanoplates and nanotrees using vitamin B1, and their application in carbon–carbon coupling reactions. J Mater Chem 19:2026–2031

    Article  CAS  Google Scholar 

  52. Pacardo DB, Sethi M, Jones SE et al (2009) Biomimetic synthesis of Pd nanocatalysts for the Stille coupling reaction. ACS Nano 3:1288–1296

    Article  CAS  Google Scholar 

  53. Sawant AD, Raut DG, Darvatkar NB et al (2010) An ester appending multifunctional ionic liquid for Pd(II) catalyzed Heck reaction. Catal Commun 12:273–276

    Article  CAS  Google Scholar 

  54. Wang Q, Cheng H, Liu R et al (2010) A green and efficient route for preparation of supported metal colloidal nanoparticles in scCO2. Green Chem 12:1417–1422

    Article  CAS  Google Scholar 

  55. Zhang G, Zhou H, Hu J et al (2009) Pd nanoparticles catalyzed ligand-free Heck reaction in ionic liquid microemulsion. Green Chem 11:1428–1432

    Article  CAS  Google Scholar 

  56. Li F, Li F, Song J et al (2009) Green synthesis of highly stable platinum nanoparticles stabilized by amino-terminated ionic liquid and its electrocatalysts for dioxygen reduction and methanol oxidation. Electrochem Commun 11:351–354

    Article  CAS  Google Scholar 

  57. Dash P, Miller SM, Scott RWJ (2010) Stabilizing nanoparticle catalysts in imidazolium-based ionic liquids: a comparative study. J Mol Catal A Chem 329:86–95

    Article  CAS  Google Scholar 

  58. Chen L, Hu J, Richards R (2009) Intercalation of aggregation-free and well-dispersed gold nanoparticles into the walls of mesoporous silica as a robust “green” catalyst for n-alkane oxidation. J Am Chem Soc 131:914–915

    Article  CAS  Google Scholar 

  59. Gupta N, Singh HP, Sharma RK (2010) Single-pot synthesis: plant mediated gold nanoparticles catalyzed reduction of methylene blue in presence of stannous chloride. Colloids Surf A 367:102–107

    Article  CAS  Google Scholar 

  60. Zhan G, Du M, Huang J et al (2011) Green synthesis of Au/TS-1 catalysts via two novel modes and their surprising performance for propylene epoxidation. Catal Commun 12:830–833

    Article  CAS  Google Scholar 

  61. Testa C, Zammataro A, Pappalardo A et al (2019) Catalysis with carbon nanoparticles. RSC Adv 9:27659–27664

    Article  CAS  Google Scholar 

  62. Zammataro A, Gangemi CMA, Pappalardo A et al (2019) Covalently functionalized carbon nanoparticles with a chiral Mn-Salen: a new nanocatalyst for enantioselective epoxidation of alkenes. Chem Commun 55:5255–5258

    Article  CAS  Google Scholar 

  63. Abd El Maksod IH, Hegazy EZ et al (2010) an environmentally benign, highly efficient catalytic reduction of p-nitrophenol using a nano-sized nickel catalyst supported on silica-alumina. Adv Synth Catal 352:1169–1178

    Article  CAS  Google Scholar 

  64. Choudhary VR, Dhar A, Jana P et al (2005) A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst. Green Chem 7:768–770

    Article  CAS  Google Scholar 

  65. Dapurkar SE, Shervani Z, Yokoyama T et al (2009) Supported gold nanoparticles catalysts for solvent-free selective oxidation of benzylic compounds into Ketones at 1 atm O2. Catal Lett 130:42–47

    Article  CAS  Google Scholar 

  66. Gupta NK, Nishimura S, Takagaki A et al (2011) Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chem 13:824–827

    Article  CAS  Google Scholar 

  67. Bernini R, Cacchi S, Fabrizi G et al (2010) Perfluoro-tagged, phosphine-free palladium nanoparticles supported on silica gel: application to alkynylation of aryl halides, Suzuki-Miyaura cross-coupling, and Heck reactions under aerobic conditions. Green Chem 12:150–158

    Article  CAS  Google Scholar 

  68. Hao C, Zhao X (2010) Highly efficient and recyclable diatomite-supported Pd nanoparticles for the Suzuki-Miyaura coupling reaction. Adv Mater Res 113–116:1824–1827

    Article  CAS  Google Scholar 

  69. Zhang W, Qi H, Li L et al (2009) Hydrothermal Heck reaction catalyzed by Ni nanoparticles. Green Chem 11:1194–1200

    Article  CAS  Google Scholar 

  70. Li P, Wang L, Li H (2005) Application of recoverable nanosized palladium(0) catalyst in Sonogashira reaction. Tetrahedron 61:8633–8640

    Article  CAS  Google Scholar 

  71. Hubert C, Denicourt-Nowicki A, Beaunier P et al (2010) TiO2-supported Rh nanoparticles: from green catalyst preparation to application in arene hydrogenation in neat water. Green Chem 12:1167–1170

    Article  CAS  Google Scholar 

  72. Cheng J, Tang L, Xu J (2010) An economical, green pathway to biaryls: palladium nanoparticles catalyzed ullmann reaction in ionic liquid/supercritical carbon dioxide system. Adv Synth Catal 352:3275–3286

    Article  CAS  Google Scholar 

  73. Cheng J, Zhang G, Du J et al (2011) New role of graphene oxide as active hydrogen donor in the recyclable palladium nanoparticles catalyzed Ullmann reaction in environment friendly ionic liquid/supercritical carbon dioxide system. J Mater Chem 21:3485–3494

    Article  CAS  Google Scholar 

  74. Truong QD, Nakayasu Y, Nguyen QT et al (2020) Defect-rich exfoliated MoSe2 nanosheets by supercritical fluid process as an attractive catalyst for hydrogen evolution in water. App Surf Sci 2020. https://doi.org/10.1016/j.apsusc.2019.144537

  75. Wang M, Liu Y, Zhang X, Fan Z, Tong Z (2018) Development of sandwich-structured cobalt porphyrin/niobium molybdate nanosheets catalyst for oxygen reduction. J Mat Res 33:4199–4206

    Article  CAS  Google Scholar 

  76. Jia H, Zhao Y, Niu P, Lu N, Fan B, Li R (2018) Amine-functionalized MgAl LDH nanosheets as efficient solid base catalysts for Knoevenagel condensation. Mol Catal 449:31–37

    Article  CAS  Google Scholar 

  77. Pérez-Mayoral E, Calvino-Casilda V, Soriano E (2016) Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products. Catal Sci Technol 6:1265–1291

    Article  Google Scholar 

  78. Du Y, Sheng H, Astruc D, Zhu M. (2020) Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00726

  79. Palavalli ND, Yaghoubi A, Lai CC, Tin CC, Javey A, Chueh YL (2015) Catalyst-dependent morphological evolution by interfacial stress in crystalline-amorphous core-shell germanium nanowires. RSC Adv 5:28454–28459

    Article  CAS  Google Scholar 

  80. Wang W, Wu Z, Eftekhari E, Huo Z, Li X, Tade MO, Yan C, Yan Z, Li C, Li Q, Zhao D (2018) High performance heterojunction photocatalytic membranes formed by embedding Cu2O and TiO2 nanowires in reduced graphene oxide. Catal Sci Technol 8:1704–1711

    Article  CAS  Google Scholar 

  81. Wang J, Wang Z, Liu CJ (2014) Enhanced Activity for CO Oxidation over WO3 Nanolamella Supported Pt Catalyst. ACS Appl Mater Interf 6:12860–12867

    Article  CAS  Google Scholar 

  82. Wu P, Feng L, Liang Y et al (2020) Magnetic Fe-C-O-Mo alloy nano-rods prepared from chemical decomposition of a screw (a top-down approach): An efficient and cheap catalyst for the preparation of dihydropyridine and dihydropyrimidone derivatives. App Cat A: General. https://doi.org/10.1016/j.apcata.2019.117301

  83. Zhao J, Zhang X, Liu M et al (2019) Metal-organic-framework-derived porous 3D heterogeneous NiFex/NiFe2O4@NC nanoflowers as highly stable and efficient electrocatalysts for the oxygen-evolution reaction. J Mat Chem A: Mater Energy Sustain 7:21338–21348

    Article  CAS  Google Scholar 

  84. Li Y, Geng X, Leng W et al (2017) Gold nanospheres and gold nanostars immobilized onto thiolated eggshell membranes as highly robust and recyclable catalysts. New J Chem 41:9406–9413

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Trusso Sfrazzetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santonocito, R., Trusso Sfrazzetto, G. (2021). Green Nanocatalysts in Organic Synthesis. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_13

Download citation

Publish with us

Policies and ethics