Skip to main content

Green Chemistry on C–H Activation

  • Chapter
  • First Online:
Green Organic Reactions

Abstract

The eco-friendly chemistry approach embraces almost all the main branches of chemistry based on the twelve principles introduced by Anastas as green chemistry rules. During the last decade, C–H bond activation protocols attracted intensive consideration as a powerful plan to create organic building blocks of complex structures in organic synthesis and transformations because of its step- and atom-economic nature. In this chapter, a number of innovative green methods of C–H bond activation and functionalization are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hess J, Bednarz D et al (2011) Petroleum and health care: evaluating and managing health care’s vulnerability to petroleum supply shifts. Am J Publ Health 101:1568–1579

    Article  Google Scholar 

  2. (1) Chen K, Baran PS (2009) Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 459:824–828; (2) Jørgensen L, McKerrall SJ et al (2013) 14-step synthesis of (+)-ingenol from (+)-3-carene. Science 341:878–882

    Google Scholar 

  3. Hesp KD, Bergman RG, Ellman JA (2011) Expedient synthesis of N-acyl anthranilamides and β-enamine amides by the Rh (III)-catalyzed amidation of aryl and vinyl C–H bonds with isocyanates. J Am Chem Soc 133:11430–11433

    Article  CAS  Google Scholar 

  4. Das P, Dutta A et al (2014) Heterogeneous ditopic ZnFe 2 O 4 catalyzed synthesis of 4 H-pyrans: further conversion to 1, 4-DHPs and report of functional group interconversion from amide to ester. Green Chem 16:1426–1435

    Article  CAS  Google Scholar 

  5. Walling C, Jacknow BB (1960) Positive halogen compounds. I. The radical chain halogenation of hydrocarbons by t-butyl hypochlorite1. J Am Chem Soc 82:6108–6112

    Article  CAS  Google Scholar 

  6. Davies HML, Du Bois J et al (2011) C–H Functionalization in organic synthesis. Chem Soc Rev 40:1855–1856

    Article  CAS  Google Scholar 

  7. Potavathri S, Pereira KC et al (2010) Regioselective oxidative arylation of indoles bearing N-alkyl protecting groups: dual C−H functionalization via a concerted metalation−deprotonation mechanism. Am Chem Soc 132:14676–14681

    Article  CAS  Google Scholar 

  8. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263

    Article  CAS  Google Scholar 

  9. Roudesly F, Oble J, Poli G (2017) Metal-catalyzed CH activation/functionalization: the fundamentals. J Mol Catal a: Chem 426:275–296

    Article  CAS  Google Scholar 

  10. Shang R, Ilies L, Nakamura E (2017) Iron-catalyzed C–H bond activation. Chem Rev 117:9086–9139

    Article  CAS  Google Scholar 

  11. Li JJ (2015) CH bond activation in organic synthesis. CRC press

    Google Scholar 

  12. (1) Goldman AS, Goldberg KI (2004) Organometallic C–H bond activation: an introduction, ACS; (2) Lapointe D, Fagnou K (2010) Overview of the mechanistic work on the concerted metallation–deprotonation pathway. Chem Lett 39:1118–1126; (3) Ackermann L (2011) Carboxylate-assisted transition-metal-catalyzed C−H bond functionalizations: mechanism and scope. Chem Rev 111:1315–1345; (4) Balcells D, Clot E, Eisenstein O, (2010). C–H bond activation in transition metal species from a computational perspective. Chem Rev 110:749–823; (5) Gallego D, Baquero EA, (2018) Recent advances on mechanistic studies on C–H activation catalyzed by base metals. Open Chem 16: 1001–1058

    Google Scholar 

  13. He J, Wasa M, Chan KS et al (2017) Palladium-catalyzed alkyl C–H bond activation. Chem Rev 117:8754–8786

    Article  CAS  Google Scholar 

  14. Park Y, Kim Y et al (2017) Transition metal-catalyzed C–H lamination: scope, mechanism, and applications. Chem Rev 117:9247–9301

    Article  CAS  Google Scholar 

  15. Hickman AJ, Sanford MS (2012) High-valent organometallic copper and palladium in catalysis. Nature 484:177–185

    Article  CAS  Google Scholar 

  16. Gandeepan P, Müller T et al (2019) 3d transition metals for C–H activation. Chem Rev 119(4):2192–2452

    Article  CAS  Google Scholar 

  17. Choy PY, Wong SM et al (2018) Recent developments in palladium-catalysed non-directed coupling of (hetero) arene C–H bonds with C–Z (Z= B, Si, Sn, S, N, C, H) bonds in bi (hetero) aryl synthesis. Org Chem Front 5:288–321

    Article  CAS  Google Scholar 

  18. Egorova KS, Ananikov VP (2017) Toxicity of metal compounds: knowledge and myths. Organometallics 36:4071–4090

    Article  CAS  Google Scholar 

  19. Gallego D, Baquero EA (2018) Recent advances on mechanistic studies on C–H activation catalyzed by base metals. Open Chem 16:1001–1058

    Article  CAS  Google Scholar 

  20. (a) Liu W, Ackermann L (2016) Manganese-catalyzed C–H activation. ACS Catal 6:3743–3752; (b) Shang R, Ilies L, Nakamura E, (2017) Iron-catalyzed C–H bond activation. Chem Rev 117:9086−9139; (c) Wang H, Moselage M et al (2016) Selective synthesis of indoles by cobalt (III)-catalyzed C–H/N–O functionalization with nitrones. ACS Catal 6:2705–2709

    Google Scholar 

  21. Castro LCM, Chatani N (2015) Nickel catalysts/N, N′-bidentate directing groups: an excellent partnership in directed C–H activation reactions. Chem Lett 44:410–421

    Article  CAS  Google Scholar 

  22. Daugulis O, Do HQ et al (2009) Palladium-and copper-catalyzed arylation of carbon−hydrogen bonds. Acc Chem Res 42:1074–1086

    Article  CAS  Google Scholar 

  23. Shi S, Nawaz KS et al (2018) Advances in enantioselective C–H activation/mizoroki-heck reaction and Suzuki reaction. Catalysts 8:90

    Article  CAS  Google Scholar 

  24. Basu D, Kumar S et al (2018) Transition metal catalyzed CH activation for the synthesis of medicinally relevant molecules: a review. J Chem Sci 130:71

    Article  CAS  Google Scholar 

  25. Sun CL, Shi ZJ (2014) Transition-metal-free coupling reactions. Chem Rev 114:9219–9280

    Article  CAS  Google Scholar 

  26. Gu Y, Wang D (2010) Direct C-3 arylation of N-acetylindoles with anisoles using phenyliodine bis (trifluoroacetate)(PIFA). Tetrahedron Lett 51:2004–2006

    Article  CAS  Google Scholar 

  27. Zhang YP, Feng XL (2016) Metal-free, C–H arylation of indole and its derivatives with aryl diazonium salts by visible-light photoredox catalysis. Tetrahedron Lett 57:2298–2302

    Article  CAS  Google Scholar 

  28. Morofuji T, Shimizu A et al (2012) Metal-and chemical-oxidant-free C–H/C–H cross-coupling of aromatic compounds: the use of radical-cation pools. Angew Chem Int Ed 51:7259–7262

    Article  CAS  Google Scholar 

  29. Kita Y, Tohma H et al (1994) Hypervalent iodine-induced nucleophilic substitution of para-substituted phenol ethers. Generation of cation radicals as reactive intermediates. J Am Chem Soc 116:3684–3691

    Article  CAS  Google Scholar 

  30. Eberson L, Hartshorn MP et al (1996) Making radical cations live longer. Chem Commun 18:2105–2112

    Article  Google Scholar 

  31. Kita Y, Takada, et al (1996) Hypervalent iodine reagents in organic synthesis: nucleophilic substitution of p-substituted phenol ethers. Pure Appl Chem 68:627

    Article  CAS  Google Scholar 

  32. Ma JJ, Yi WB et al (2015) Transition-metal-free C–H oxidative activation: persulfate-promoted selective benzylic mono-and difluorination. Org Biomol Chem 13:2890–2894

    Article  CAS  Google Scholar 

  33. Wang D, Ge B et al (2014) Transition metal-free direct C–H functionalization of quinones and naphthoquinones with diaryliodonium salts: synthesis of aryl naphthoquinones as β-secretase inhibitors. J Org Chem 79:8607–8613

    Article  CAS  Google Scholar 

  34. Chen J, Wu J (2017) Transition-metal-free C3 arylation of indoles with aryl halides. Angew Chem Int Ed 56:3951

    Article  CAS  Google Scholar 

  35. Shamsabadi A, Chudasama V (2019) Recent advances in metal-free aerobic C–H activation. Org Biomol Chem 17:2865–2872

    Article  CAS  Google Scholar 

  36. Jimenez-Gonzalez C, Ponder CS et al (2011) Using the right green yardstick: why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. Org Process Res Dev 15:912–917

    Article  CAS  Google Scholar 

  37. Santoro S, Ferlin F et al (2017) Biomass-derived solvents as effective media for cross-coupling reactions and C–H functionalization processes. Green Chem 19:1601–1612

    Article  CAS  Google Scholar 

  38. Fu XP, Liu L et al (2011) “On water”-promoted direct alkynylation of isatins catalyzed by NHC–silver complexes for the efficient synthesis of 3-hydroxy-3-ethynylindolin-2-ones. Green Chem 13:549–553

    Article  CAS  Google Scholar 

  39. Fischmeister C, Doucet H (2011) Greener solvents for ruthenium and palladium-catalysed aromatic C–H bond functionalisation. Green Chem 13:741–753

    Article  CAS  Google Scholar 

  40. Schäffner B, Schäffner F et al (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110:4554–4581

    Article  CAS  Google Scholar 

  41. Nie R, Lai R et al (2019) Water-mediated C–H activation of arenes with secure carbene precursors: the reaction and its application. Chem Commun 55:11418–11421

    Article  CAS  Google Scholar 

  42. Yao C, Qin B et al (2012) One-pot solvent-free synthesis of quinolines by C–H activation/C–C bond formation catalyzed by recyclable iron (III) triflate. RSC Adv 2:3759–3764

    Article  CAS  Google Scholar 

  43. Rasina D, Kahler-Quesada A et al (2016) Heterogeneous palladium-catalysed Catellani reaction in biomass-derived γ-valerolactone. Green Chem 18:5025–5030

    Article  CAS  Google Scholar 

  44. Sambiagio C, Schönbauer D et al (2018) A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem Soc Rev 47:6603–6743

    Article  CAS  Google Scholar 

  45. Tsurugi H, Yamamoto K et al (2010) Oxidant-free direct coupling of internal alkynes and 2-alkylpyridine via double C−H activations by alkylhafnium complexes. J Am Chem Soc 133:732–735

    Article  CAS  Google Scholar 

  46. Hu H, Liu Y et al (2014) Palladium catalyzed oxidative Suzuki coupling reaction of indolizine at the 3-position using oxygen gas as the only oxidant. RSC Adv 4:24389–24393

    Article  CAS  Google Scholar 

  47. Tan Y, Yuan W et al (2015) Aerobic Asymmetric dehydrogenative cross-coupling between two C−H groups catalyzed by a chiral-at-metal rhodium complex. Angew Chem Int Ed 54:13045–13048

    Article  CAS  Google Scholar 

  48. Matsumoto K, Yoshida M et al (2016) Heterogeneous rhodium-catalyzed aerobic oxidative dehydrogenative cross-coupling: nonsymmetrical biaryl amines. Angew Chem 128:5358

    Article  Google Scholar 

  49. Gaikwad VV, Bhanage BM (2018) Palladium-catalyzed aerobic oxidative carbonylation of C–H bonds in phenols for the synthesis of p-hydroxybenzoates. Eur J Org Chem 22:2877–2881

    Article  CAS  Google Scholar 

  50. Rostami A, Khakyzadeh V et al (2018) Co (II)-catalyzed regioselective clean and smooth synthesis of 2-(aryl/alkyl-thio) phenols via sp2 CH bond activation. Molecular Catalysis 452:260–263

    Article  CAS  Google Scholar 

  51. Albrecht M (2010) Cyclometalation using d-block transition metals: fundamental aspects and recent trends. Chem Rev 110:576–623

    Article  CAS  Google Scholar 

  52. Patra T, Watile R et al (2016) Sequential meta-C–H olefination of synthetically versatile benzyl silanes: effective synthesis of meta-olefinated toluene, benzaldehyde and benzyl alcohols. Chem Commun 52:2027–2203

    Article  CAS  Google Scholar 

  53. Herrmann P, Bach T (2011) Diastereotopos-differentiating C–H activation reactions at methylene groups. Chem Soc Rev 40:2022–2038

    Article  CAS  Google Scholar 

  54. Yoshida JI, Kataoka K et al (2008) Modern strategies in electroorganic synthesis. Chem Rev 108:2265–2299

    Google Scholar 

  55. Frontana-Uribe BA, Little RD et al (2010) Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem 12:2099–2119

    Article  CAS  Google Scholar 

  56. Cardoso DS, Šljukić B et al (2017) Organic electrosynthesis: from laboratorial practice to industrial applications. Org Process Res Dev 21:1213–1226

    Google Scholar 

  57. Kärkäs MD (2018) Electrochemical strategies for C–H functionalization and C–N bond formation. Chem Soc Rev 47:5786–5865

    Article  Google Scholar 

  58. Meyer TH, Finger LH et al (2019) Trends in Chemistry 1:63–76

    Google Scholar 

  59. Qiu Y, Tian C et al (2018) Electrooxidative ruthenium-catalyzed C−H/O−H annulation by weak O-coordination. Angew Chem Int Ed 57:5818–5822

    Article  CAS  Google Scholar 

  60. Song G, Wang F et al (2012) C-C, C–O and C–N bond formation via rhodium (iii)-catalyzed oxidative C–H activation. Chem Soc Rev 41:3651–3678

    Article  CAS  Google Scholar 

  61. Qiu Y, Kong WJ et al (2018) Electrooxidative rhodium-catalyzed C−H/C−H activation: electricity as oxidant for cross-dehydrogenative alkenylation. Angew Chem Int Ed 57:5828

    Article  CAS  Google Scholar 

  62. Yang QL, Li YQ et al (2017) Palladium-catalyzed C (sp3)−H oxygenation via electrochemical oxidation. J Am Chem Soc 139:3293–3298

    Article  CAS  Google Scholar 

  63. Li YQ, Yang QL et al (2017) Palladium-catalyzed C (sp2)–H acetoxylation via electrochemical oxidation. Org Lett 19:2905–2908

    Article  CAS  Google Scholar 

  64. Ma C, Zhao CQ et al (2017) Palladium-catalyzed C–H activation/C–C cross-coupling reactions via electrochemistry. Chem Commun 53:12189–12192

    Article  CAS  Google Scholar 

  65. Yang QL, Li CZ et al (2018) Palladium-catalyzed electrochemical C–H alkylation of arenes. Organometallics 38:1208–1212

    Article  CAS  Google Scholar 

  66. Sauermann N, Meyer TH et al (2017) Electrochemical cobalt-catalyzed C–H oxygenation at room temperature. J Am Chem Soc 139:18452–18455

    Article  CAS  Google Scholar 

  67. Tian C, Massignan L et al (2018) Electrochemical C−H/N−H activation by water-tolerant cobalt catalysis at room temperature. Angew Chem Int Ed 57:2383

    Article  CAS  Google Scholar 

  68. Tang S, Wang D et al (2018) Cobalt-catalyzed electrooxidative CH/NH [4+2] annulation with ethylene or ethyne. Nat Commun 9:798

    Article  CAS  Google Scholar 

  69. Yu Y, Zheng P et al (2018) Electrochemical cobalt-catalyzed C–H or N–H oxidation: a facile route to synthesis of substituted oxindoles. Org Biomol Chem 16:8917–8921

    Article  CAS  Google Scholar 

  70. Yang QL, Wang XY et al (2018) Copper-catalyzed electrochemical C–H amination of arenes with secondary amines. J Am Chem Soc 140:11487–11494

    Article  CAS  Google Scholar 

  71. Zhang SK, Samanta RC et al (2018) Nickel-catalyzed electrooxidative C−H amination: support for nickel (IV). Chem Eur J 24:19166

    Article  CAS  Google Scholar 

  72. Santoro S, Ferlin F et al (2019) C–H functionalization reactions under flow conditions. Chem Soc Rev 48:2767–2782

    Article  CAS  Google Scholar 

  73. Gutmann B, Cantillo D et al (2015) Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54:6688–6728

    Article  CAS  Google Scholar 

  74. Mandrelli F, Buco A et al (2017) The scale-up of continuous biphasic liquid/liquid reactions under super-heating conditions: methodology and reactor design. Green Chem 19:1425–1430

    Article  CAS  Google Scholar 

  75. Lévesque F, Seeberger PH (2012) Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew Chem Int Ed 51:1706–1709

    Article  CAS  Google Scholar 

  76. Su Y, Straathof NJ et al (2014) Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications. Chem Eur J 20:10562–10589

    Article  CAS  Google Scholar 

  77. Vaccaro L, Curini M et al (2018) Definition of green synthetic tools based on safer reaction media, heterogeneous catalysis, and flow technology. Pure Appl Chem 90:21–33

    Article  CAS  Google Scholar 

  78. Ferlin F, Santoro S et al (2017) Heterogeneous C–H alkenylations in continuous-flow: oxidative palladium-catalysis in a biomass-derived reaction medium. Green Chem 19:2510–2514

    Article  CAS  Google Scholar 

  79. Xu F, Qian XY et al (2017) Synthesis of 4 H-1, 3-benzoxazines via metal-and oxidizing reagent-free aromatic C–H oxygenation. Org Lett 19:6332–6335

    Article  CAS  Google Scholar 

  80. Fabry DC, Rueping M (2016) Merging visible light photoredox catalysis with metal catalyzed C–H activations: on the role of oxygen and superoxide ions as oxidants. Acc Chem Res 49:1969–1979

    Article  CAS  Google Scholar 

  81. Zeitler K (2009) Photoredoxkatalyse mit sichtbarem Licht. Angew Chem 121:9969–9974

    Article  Google Scholar 

  82. Karkas MD, Porco JA Jr et al (2016) Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem Rev 116:9683–9747

    Article  CAS  Google Scholar 

  83. Ravelli D, Fagnoni M et al (2013) Photoorganocatalysis. What for? Chem Soc Rev 42:97–113

    Article  CAS  Google Scholar 

  84. Romero NA, Nicewicz DA (2016) Organic photoredox catalysis. Chem Rev 116:10075–10166

    Article  CAS  Google Scholar 

  85. Wang B, Li P et al (2019) Visible-light induced decarboxylative C2-alkylation of benzothiazoles with carboxylic acids under metal-free conditions. Org Biomol Chem 17:115–121

    Article  CAS  Google Scholar 

  86. McManus JB, Nicewicz DA (2019) Direct C–H cyanation of arenes via organic photoredox catalysis. J Am Chem Soc 139:2880–2883

    Article  CAS  Google Scholar 

  87. Margrey KA, Czaplyski WL et al (2018) A general strategy for aliphatic C–H functionalization enabled by organic photoredox catalysis. J Am Chem Soc 140:4213–4217

    Article  CAS  Google Scholar 

  88. Wang GW (2013) Mechanochemical organic synthesis. Chem Soc Rev 42:7668–7700

    Article  CAS  Google Scholar 

  89. Cheng H, Hernández JG et al (2017) Mechanochemical ruthenium-catalyzed hydroarylations of alkynes under ball-milling conditions. Org Lett 19:6284–6287

    Article  CAS  Google Scholar 

  90. Howard JL, Cao Q et al (2018) Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem Sci 9:3080–3094

    Google Scholar 

  91. Hermann GN, Bolm C (2017) Mechanochemical rhodium (III)-catalyzed C–H bond amidation of arenes with dioxazolones under solventless conditions in a ball mill. ACS Catal 7:4592–4596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Khakyzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khakyzadeh, V., Sheikhaleslami, S. (2021). Green Chemistry on C–H Activation. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_11

Download citation

Publish with us

Policies and ethics