Skip to main content

Insights into Sustainable C–H Bond Activation

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

Over the recent past, the straight functionalization of inert C–H bond has already been identified as an advanced technique for the synthesis of organic molecules. It has provided a step-, pot- and atom-economic synthetic approach to attain structurally challenging organic scaffolds using simpler, pre-functionalized substrates by single operation and thereby arisen as a sustainable substitution to traditional organic transformations. Regardless of the clear evolution and improvements in metal-catalysed C–H functionalization reactions, these kinds of conversions quiet face considerable restrictions with respect to green chemistry regarding the catalyst reusability, media, time efficiency, energy efficiency, byproducts, requirement of additives as well as oxidants. Encouraged with the necessity for green and sustainable chemistry, researchers attempt further effective routes in this area for the construction of organic scaffolds. Recently, distinguished achievements were attained with the expansion of sustainable methodologies in C–H activation reactions. The attention of the book section is to summarize the progress of greener methodologies for C–H functionalization reactions which incorporate applications of greener solvents, microwave irradiation, photocatalysis, homogeneous recyclable catalytic systems, heterogeneous catalysts, oxidizing directing groups, electrochemical methods, etc., during the past few years. The book chapter emphasizes selected fascinating and encouraging examples of greener methodologies in C–H activation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark JH, Luque R, Matharu AS (2012) Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol Eng 3:183

    Google Scholar 

  2. Linthorst JA (2010) An overview: origins and development of green chemistry. Found Chem 12(1):55

    Google Scholar 

  3. Baron M (2012) Towards a Greener Pharmacy by More Eco Design. Waste and Biomass Valorization 3:395

    Google Scholar 

  4. Richard KH, Concepción JG, Constable DJC, Sarah RA, Graham GAI, Gail F, James S, Steve PB, Alan DC (2011) Expanding GSK s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem 13:854

    Google Scholar 

  5. Kumar A, Gupta G, Srivastava S (2011) Functional ionic liquid mediated synthesis (FILMS) of dihydrothiophenes and tacrine derivatives. Green Chem 13:2459

    Google Scholar 

  6. Wender PA, Handy ST, Wright DL (1997) Towards the Ideal Synthesis. Chem Ind 19:765

    Google Scholar 

  7. Hudlicky T, Natchus MG (1993) In: Hudlicky T (ed) Organic synthesis: theory and applications. Jai Press, Greenwich

    Google Scholar 

  8. Wender PA (1996) Introduction: Frontiers in Organic Synthesis. Chem Rev 96:1

    Google Scholar 

  9. Eissen M, Metzger JO (2002) Environmental Performance Metrics for Daily Use in Synthetic Chemistry. Chem Eur J 8(16):3580

    Google Scholar 

  10. Centi G, Perathoner S (2003) Catalysis and sustainable (green) chemistry. Catal Today 77(4):287

    Google Scholar 

  11. Anastas P, Eghbali N (2010) Green Chemistry: Principles and Practice. Chem. Soc. Rev. 39:301

    Google Scholar 

  12. Kumar A, Tripathi VD, Kumar P (2011) β-Cyclodextrin catalysed synthesis of tryptanthrin in water. Green Chem 13:51

    Google Scholar 

  13. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int 50:3854

    Google Scholar 

  14. Hess J, Bednarz D, Bae J, Pierce J (2011) Petroleum and Health Care: Evaluating and Managing Health Care’s Vulnerability to Petroleum Supply Shifts. Am. J. Public Health 101:1568

    Google Scholar 

  15. Schwartz BS, Parker CL, Hess J, Frumkin H (2011) Public Health and Medicine in an Age of Energy Scarcity: The Case of Petroleum. Am. J. Public Health 101:1560

    Google Scholar 

  16. Walling C, Jacknow BB (1960) Positive Halogen Compounds. I. The Radical Chain Halogenation of Hydrocarbons by t-Butyl Hypochlorite1. J. Am. Chem. Soc. 82:6108

    Google Scholar 

  17. Recupero F, Punta C (2007) Free Radical Functionalization of Organic Compounds Catalyzed by N-Hydroxyphthalimide. Chem. Rev. 107:3800

    Google Scholar 

  18. Brühne F, Wright E (2011) Benzaldehyde. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  19. Davies HML, Du Bois J, Yu J-Q (2011) C–H Functionalization in organic synthesis. Chem. Soc. Rev. 40:1855

    Google Scholar 

  20. Das P, Dutta A, Bhaumik A, Mukhopadhyay C (2014) Heterogeneous ditopic ZnFe2O4 catalyzed synthesis of 4H-pyrans: further conversion to 1,4-DHPs and report of functional group interconversion from amide to ester. Green Chem. 16:1426

    Google Scholar 

  21. Gutekunst WR, Baran PS (2011) C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40:1976

    Google Scholar 

  22. Yamaguchi J, Yamaguchi AD, Itami K (2012) C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51: 8960

    Google Scholar 

  23. Ackermann L (2011) Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem. Rev. 111:1315

    Google Scholar 

  24. Song G, Wang F, Li X (2012) C–C, C–O and C–N bond formation via rhodium(iii)-catalyzed oxidative C–H activation. Chem. Soc. Rev. 41:3651

    Google Scholar 

  25. Blanksby SJ, Ellison GB (2003) Bond Dissociation Energies of Organic Molecules. Acc. Chem. Res. 36:255

    Google Scholar 

  26. Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F (2012) Beyond Directing Groups: Transition‐Metal-Catalyzed C–H Activation of Simple Arenes. Angew. Chem. Int. Ed. 51:10236

    Google Scholar 

  27. Rossi R, Bellina F, Lessi M, Manzini C (2014) Cross-Coupling of Heteroarenes by C–H Functionalization: Recent Progress towards Direct Arylation and Heteroarylation Reactions Involving Heteroarenes Containing One Heteroatom. Adv. Synth. Catal. 356:17

    Google Scholar 

  28. Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev. 110:1147

    Google Scholar 

  29. Zhang F, Spring DR (2014) Arene C–H functionalisation using a removable/modifiable or a traceless directing group strategy. Chem. Soc. Rev. 43:6906

    Google Scholar 

  30. de Vries JG, Jackson SD (2012) Homogeneous and heterogeneous catalysis in industry. Catal. Sci. Technol. 2:2009

    Google Scholar 

  31. Luz I, Llabres i Xamena FX, Corma A (2012) Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. J. Catal. 285:285

    Google Scholar 

  32. Somorjai GA (2008) in The 13th International Symposium on Relations Between Homogeneous and Heterogeneous Catalysis - An Introduction. Top. Catal. 48:1

    Google Scholar 

  33. Leeuwen v, WNM P (2005) Homogeneous Catalysis. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  34. de Meijere A, Diederich F, Eds. (2004) in Metal-Catalyzed Cross-Coupling Reactions, Vol. 2, Wiley-VCH: Weinheim

    Google Scholar 

  35. Beller M, Bolm C (2004) Transition metals for organic synthesis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  36. Martin R, Buchwald SL (2008) Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 41:1461

    Google Scholar 

  37. Saito B, Fu GC (2007) Alkyl−Alkyl Suzuki Cross-Couplings of Unactivated Secondary Alkyl Halides at Room Temperature. J. Amer. Chem. Soc. 129:9602

    Google Scholar 

  38. Diebolt O, Braunstein P, Nolan SP, Cazin CS (2008) Room-temperature activation of aryl chlorides in Suzuki–Miyaura coupling using a [Pd(μ-Cl)Cl(NHC)]2 complex (NHC = N-heterocyclic carbene). Chem. Commun. 27:3190

    Google Scholar 

  39. Billingsley KL, Buchwald SL (2008) A general and efficient method for the Suzuki-Miyaura coupling of 2-pyridyl nucleophiles. Angew. Chem. Int. Ed., 47:4695

    Google Scholar 

  40. Garrett CE, Prasad K (2004) The Art of Meeting Palladium Specifications in Active Pharmaceutical Ingredients Produced by Pd‐Catalyzed Reactions. Adv. Synth. Catal. 346:889

    Google Scholar 

  41. Welch CJ, Albaneze-Walker J, Leonard WR, Biba M, DaSilva J, Henderson D, Laing B, Mathre DJ, Spencer S, Bu X, Wang T (2005) Adsorbent Screening for Metal Impurity Removal in Pharmaceutical Process Research. Org. Process Res. Dev. 9:198 

    Google Scholar 

  42. Kuriyama M, Nagai K, Yamada K-i, Miwa Y, Taga T, Tomioka K (2002) Hemilabile Amidomonophosphine Ligand−Rhodium(I) Complex-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to Cycloalkenones. J. Am. Chem. Soc. 124:8932

    Google Scholar 

  43. Lautenes M, Dockendorff C, Fagnou K, Malicki A (2002) Rhodium-Catalyzed Asymmetric Ring Opening of Oxabicyclic Alkenes with Organoboronic Acids. Org. lett. 4:1311

    Google Scholar 

  44. Jang H-Y, Krische MJ (2004) Catalytic C−C Bond Formation via Capture of Hydrogenation Intermediates. Acc. Chem. Res. 37:653

    Google Scholar 

  45. Enthaler S, Junge K, Beller M (2008) Sustainable Metal Catalysis with Iron: From Rust to a Rising Star? Angew. Chem., Int. Ed. 47:3317

    Google Scholar 

  46. Piontek A, Bisz E, Szostak M (2018) Iron-Catalyzed Cross-Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. Angew. Chem. Int. Ed. 57:11116

    Google Scholar 

  47. Guideline on the specification limits for residues of metal catalysts or metal reagents, European Medicines Agency, London, 21-02-2008. Document reference EMEA/CHMP/SWP/4446/2000

    Google Scholar 

  48. Cole-Hamilton DJ, Tooze RP (eds) (2006) Homogeneous catalysis advantages, problems in catalyst separation, recovery, recycling. Springer, Dordrecht

    Google Scholar 

  49. Baker RT, Tumas W (1999) Toward Greener Chemistry. Science 284:1477

    Google Scholar 

  50. Reay AJ, Fairlamb IJS (2015) Catalytic C–H bond functionalisation chemistry: the case for quasi-heterogeneous catalysis. Chem. Commun. 51:16289

    Google Scholar 

  51. Santoro S, Kozhushkov SI, Ackermann L, Vaccaro L (2016) Heterogeneous catalytic approaches in C–H activation reactions. Green Chem. 18:3471

    Google Scholar 

  52. Mizuno N, Misono M (1998) Heterogeneous Catalysis. Chem. Rev. 98:199

    Google Scholar 

  53. Yoon M, Srirambalaji R, Kim K (2012) Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev. 112:1196

    Google Scholar 

  54. Warner JC, Anastas (1998) Green Chemistry, Oxford Univeristy Press, New York

    Google Scholar 

  55. Cano R, Schmidt AF, McGlacken GP (2015) Direct arylation and heterogeneous catalysis; ever the twain shall meet. Chem. Sci. 6:5338

    Google Scholar 

  56. Ranu BC, Bhadra S, Saha D (2011) Green recyclable supported catalyst for useful organic transformations. Curr. Org. Synth. 8:146

    Google Scholar 

  57. Molnár Á (2011) Efficient, Selective, and Recyclable Palladium Catalysts in Carbon−Carbon Coupling Reactions. Chem. Rev. 111:2251

    Google Scholar 

  58. Parsharamulu T, Venkanna D, Kantam ML, Bhargava SK, Srinivasu P (2014) The First Example of ortho-Arylation of Benzamides over Pd/Mesoporous Silica: A Novel Approach for Direct sp2 C–H Bond Activation. Ind. Eng. Chem. Res. 53:20075

    Google Scholar 

  59. Miura H, Wada K, Hosokawa S, Inoue M (2010) Recyclable Solid Ruthenium Catalysts for the Direct Arylation of Aromatic C–H Bonds. Chem. –Eur. J. 16:4186

    Google Scholar 

  60. Miura H, Wada K, Hosokawa S, Inoue M. (2010) Catalytic Addition of Aromatic C–H Bonds to Vinylsilanes in the Presence of Ru/CeO2. Chem-CatChem 2:1223

    Google Scholar 

  61. Kishore R, Kantam ML, Yadav J, Sudhakar M, Laha S, Venugopal A (2013) Pd/Mg–La mixed oxide catalyzed oxidative sp2 Csingle bondH bond acylation with alcohols. J. Mol. Catal. A: Chem. 379:213

    Google Scholar 

  62. Kishore R, Yadav J, Venu B, Venugopal A, Kantam ML (2015) A Pd(ii)/Mg–La mixed oxide catalyst for cyanation of aryl C–H bonds and tandem Suzuki–cyanation reactions. New J. Chem. 39:5259

    Google Scholar 

  63. Fei H, Cohen SM (2015) Metalation of a Thiocatechol-Functionalized Zr(IV)-Based Metal–Organic Framework for Selective C–H Functionalization. J. Am. Chem. Soc. 137:2191

    Google Scholar 

  64. Bai C, Yao X, Li Y (2015) Easy Access to Amides through Aldehydic C–H Bond Functionalization Catalyzed by Heterogeneous Co-Based Catalysts. ACS Catal. 5:884

    Google Scholar 

  65. Pascanu V, Carson F, Solano MV, Su J, Zou X, Johansson MJ, Martín-Matute B (2016) Selective Heterogeneous C−H Activation/Halogenation Reactions Catalyzed by Pd@MOF Nanocomposites. Chem. – Eur. J. 22:3729

    Google Scholar 

  66. Chng LL, Zhang J, Yang J, Amoura M, Ying JY (2011) C–C Bond Formation via C–H Activation and C–N Bond Formation via Oxidative Amination Catalyzed by Palladium‐ Polyoxometalate Nanomaterials Using Dioxygen as the Terminal Oxidant. Adv. Synth. Catal. 353:2988

    Google Scholar 

  67. Chen J, He L, Natte K, Neuman H, Beller M, Wu X-F (2014) Palladium@Cerium(IV) Oxide‐Catalyzed Oxidative Synthesis of N‐(2‐Pyridyl)indoles via C–H Activation Reaction. Adv. Synth. Catal. 356:2955

    Google Scholar 

  68. Zahmakiran M, Özkar S (2011) Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. Nanoscale 3:3462

    Google Scholar 

  69. Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y (2014) Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 43:3480

    Google Scholar 

  70.  Bhaduri S, Mukesh D (2014) Homogeneous Catalysis: Mechanisms, Industrial Applications, 2nd Edition, Wiley

    Google Scholar 

  71. Blaser H-U (2003) Enantioselective catalysis in fine chemicals production. Chem Commun: 293

    Google Scholar 

  72. Benaglia M (2009) Recoverable, Recyclable Catalysts; John Wiley & Sons: Chichester

    Google Scholar 

  73. Wittmann S, Schatz A, Grass R, Stark W, Reiser O (2010) A Recyclable Nanoparticle‐Supported Palladium Catalyst for the Hydroxycarbonylation of Aryl Halides in Water. Angew. Chem. Int. Ed. 49:1867

    Google Scholar 

  74. Basset J-M, Copéret C, Soulivong D, Taoufik M, Thivolle-Cazat (2010) Metathesis of Alkanes and Related Reactions. J. Acc. Chem. Res. 43:323

    Google Scholar 

  75. Collis AEC, Horvath IT (2011) Heterogenization of homogeneous catalytic systems. Catal. Sci. Technol. 1:912Collis AEC, Horvath IT (2011) Heterogenization of homogeneous catalytic systems. Catal. Sci. Technol. 1:912

    Google Scholar 

  76. Cole-Hamilton DJ (2003) Homogeneous Catalysis--New Approaches to Catalyst Separation, Recovery, and Recycling. Science 299:1702

    Google Scholar 

  77. Carmichael AJ, Earle MJ, Holbrey JD, McCormac PB, Seddon KR (1999) The Heck Reaction in Ionic Liquids: A Multiphasic Catalyst System. Org. Lett. 1:997

    Google Scholar 

  78. Pozzi G, Shepperson I (2003) Fluorous chiral ligands for novel catalytic systems. Coord Chem Rev 242:115

    Google Scholar 

  79. Herrmann WA, Kohlpainter CW (1993) Water‐Soluble Ligands, Metal Complexes, and Catalysts: Synergism of Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed Engl 32:1524

    Google Scholar 

  80. De Vos DE, Vankelecom IFJ, Jacobs PA (eds) (2005) Chiral catalyst immobilization and recycling. Wiley-VCH, Weinheim

    Google Scholar 

  81. Olmos A, Asensio G, Pérez PJ (2016) Homogeneous Metal-Based Catalysis in Supercritical Carbon Dioxide as Reaction Medium. ACS Catal. 6:4265

    Google Scholar 

  82. Gava R, Olmos A, Noverges B, Varea T, Funes-Ardoiz I, Belderrain TR, Caballero A, Maseras F, Asensio G, Pérez PJ (2015) Functionalization of CnH2n+2 Alkanes: Supercritical Carbon Dioxide Enhances the Reactivity towards Primary Carbon–Hydrogen Bonds. ChemCatChem 7:3254

    Google Scholar 

  83. Hu YL, Wu YP, Lu M (2018) Co (II)‐C12 alkyl carbon chain multi‐functional ionic liquid immobilized on nano‐SiO2 nano‐SiO2@CoCl3‐C12IL as an efficient cooperative catalyst for C–H activation by direct acylation of aryl halides with aldehydes. Appl. Organomet. Chem. 32:e4096

    Google Scholar 

  84. Cotugno P, Monopoli A, Ciminale F, Milella A, Nacci A (2014) Palladium‐Catalyzed Cross‐Coupling of Styrenes with Aryl Methyl Ketones in Ionic Liquids: Direct Access to Cyclopropanes. Angew. Chem. Int. Ed. 53:13563

    Google Scholar 

  85. Ruokonen S-K, Sanwald C, Sundvik M, Polnick S, Vyavaharkar K, Duša F, Holding AJ, King AWT, Kilpeläinen I, Lämmerhofer M, Panula P, Wiedmer SK (2016) Effect of Ionic Liquids on Zebrafish (Danio rerio) Viability, Behavior, and Histology; Correlation between Toxicity and Ionic Liquid Aggregation. Environ. Sci. Technol. 50:7116

    Google Scholar 

  86. Kumar M, Trivedi N, Reddy CRK, Jha B (2011) Toxic Effects of Imidazolium Ionic Liquids on the Green Seaweed Ulva lactuca: Oxidative Stress and DNA Damage. Chem. Res. Toxicol. 24:1882

    Google Scholar 

  87. Stefanidis G, Stankiewicz A (eds) (2016) Alternative Energy Sources for Green Chemistry, The Royal Society of Chemistry, Cambridge

    Google Scholar 

  88. Tundo P, Perosa A, Zecchini F (eds) (2007) Methods and Reagents for Green Chemistry: An Introduction, John Wiley & Sons, Hoboken

    Google Scholar 

  89. Zhao H, Cheng M, Zhang J, Cai M (2014) Recyclable and reusable PdCl2(PPh3)2/PEG-2000/H2O system for the carbonylative Sonogashira coupling reaction of aryl iodides with alkynes. Green Chem. 16:2515

    Google Scholar 

  90. Cecchini MM, Charnay C, De Angelis F, Lamaty F, Martinez J, Colacino E (2014) Poly(ethylene glycol)‐Based Ionic Liquids: Properties and Uses as Alternative Solvents in Organic Synthesis and Catalysis. ChemSusChem 7:45

    Google Scholar 

  91. Vafaeezadeh M, Hashemi MM (2015) Polyethylene glycol (PEG) as a green solvent for carbon–carbon bond formation reactions. J. Mol. Liq. 207:73

    Google Scholar 

  92. Bergbreiter DE (2002) Using Soluble Polymers To Recover Catalysts and Ligands. Chem. Rev. 102:3345

    Google Scholar 

  93. Han W, Liu C, Jin Z (2008) Aerobic Ligand‐Free Suzuki Coupling Reaction of Aryl Chlorides Catalyzed by In Situ Generated Palladium Nanoparticles at Room Temperature. Adv. Synth. Catal. 350:501

    Google Scholar 

  94. Burley GA, Davies DL, Griffith GA, Lee M, Singh K (2010) Cu-Catalyzed N-Alkynylation of Imidazoles, Benzimidazoles, Indazoles, and Pyrazoles Using PEG as Solvent Medium. J. Org. Chem. 75:980

    Google Scholar 

  95. Chandrasekhar S, Narsihmulu C, Sultana SS, Reddy NR (2002) Poly(ethylene glycol) (PEG) as a Reusable Solvent Medium for Organic Synthesis. Application in the Heck Reaction. Org. Lett. 4:4399

    Google Scholar 

  96. Declerck V, Colacino E, Bantreil X, Martinez J, Lamaty F. (2012) Poly(ethylene glycol) as reaction medium for mild Mizoroki–Heck reaction in a ball-mill. Chem. Commun. 48:11778

    Google Scholar 

  97. Li J-H, Liu W-J, Xie Y-X (2005) Recyclable and Reusable Pd(OAc)2/DABCO/PEG-400 System for Suzuki−Miyaura Cross-Coupling Reaction. J. Org.Chem. 70:5409

    Google Scholar 

  98. Liu L, Zhang Y, Wang Y (2005) Phosphine-Free Palladium Acetate Catalyzed Suzuki Reaction in Water. J. Org. Chem. 70:6122

    Google Scholar 

  99. Wang L, Zhang Y, Liu L, Wang Y (2006) Palladium-Catalyzed Homocoupling and Cross-Coupling Reactions of Aryl Halides in Poly(ethylene glycol). J. Org. Chem. 71:1284

    Google Scholar 

  100. Ackermann L, Vicente R (2009) Catalytic Direct Arylations in Polyethylene Glycol (PEG): Recyclable Palladium(0) Catalyst for C−H Bond Cleavages in the Presence of Air. Org. Lett. 11:4922

    Google Scholar 

  101. Zhou Q, Wei S, Han W (2014) In Situ Generation of Palladium Nanoparticles: Ligand-Free Palladium Catalyzed Pivalic Acid Assisted Carbonylative Suzuki Reactions at Ambient Conditions. J. Org. Chem. 79:1454

    Google Scholar 

  102. Xu C, Huang B, Yan T, Cai M (2018) A recyclable and reusable K2PtCl4/Xphos-SO3Na/PEG-400/H2O system for highly regio- and stereoselective hydrosilylation of terminal alkynes. Green Chem. 20:391

    Google Scholar 

  103. Yedage SL, Bhanage BM (2016) Ru(ii)/PEG-400 as a highly efficient and recyclable catalytic media for annulation and olefination reactions via C–H bond activation. Green Chem. 18:5635

    Google Scholar 

  104. Zhao H, Zhang T, Yan T, Cai M (2015) Recyclable and Reusable [RuCl2(p-cymene)]2/Cu(OAc)2/PEG-400/H2O System for Oxidative C–H Bond Alkenylations: Green Synthesis of Phthalides. J. Org. Chem. 80:8849

    Google Scholar 

  105. Yedage SL, Bhanage BM (2017) tert-Butyl Nitrite-Mediated Synthesis of N-Nitrosoamides, Carboxylic Acids, Benzocoumarins, and Isocoumarins from Amides. J. Org. Chem. 82:5769

    Google Scholar 

  106. Deshmukh DS, Bhanage BM (2018) N-Tosylhydrazone directed annulation via C–H/N–N bond activation in Ru(ii)/PEG-400 as homogeneous recyclable catalytic system: a green synthesis of isoquinolines. Org. Biomol. Chem. 16:4864

    Google Scholar 

  107. Deshmukh DS, Gangwar N, Bhanage BM (2019) Rapid and Atom Economic Synthesis of Isoquinolines and Isoquinolinones by C–H/N–N Activation Using a Homogeneous Recyclable Ruthenium Catalyst in PEG Media. Eur Journal of Organic Chemistry 2019:2919

    Google Scholar 

  108. Jian L, He H-Y, Huang J, Wu Q-H, Yuan M-L, Fu H-Y, Zheng X-L, Chen H, Li R-X (2017) Combination of RuCl3·xH2O with PEG – a simple and recyclable catalytic system for direct arylation of heteroarenes via C–H bond activation. RSC Adv. 7:23515

    Google Scholar 

  109. Ferlin F, Reddy Yetra S, Warratz S, Vaccaro L, Ackermann L (2019) Reusable Pd@PEG Catalyst for Aerobic Dehydrogenative C−H/C−H Arylations of 1,2,3‐Triazoles. Chemistry A European journal 25:11427

    Google Scholar 

  110. Tao L-M, Li C-H, Chen J, Liu H (2019) Cobalt(III)-Catalyzed Oxidative Annulation of Benzaldehydes with Internal Alkynes via C-H Functionalization in Poly(ethylene glycol). J. Org. Chem. 84:6807

    Google Scholar 

  111. Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y (2015) Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org. Chem. Front. 2:1107

    Google Scholar 

  112. Sun H, Guimond N, Huang Y (2016) Advances in the development of catalytic tethering directing groups for C–H functionalization reactions. Org. Biomol. Chem. 14: 8389

    Google Scholar 

  113. Rousseau G, Breit B (2011) Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 50:2450

    Google Scholar 

  114. Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N (1993) Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins. Nature 366:529

    Google Scholar 

  115. Stuart DR, Bertrand-Laperle M, Burgess KMN, Fagnou K (2008) Indole Synthesis via Rhodium Catalyzed Oxidative Coupling of Acetanilides and Internal Alkynes. J. Am. Chem. Soc. 130:16474

    Google Scholar 

  116. Rakshit S, Patureau FW, Glorius F (2010) Pyrrole Synthesis via Allylic sp3 C−H Activation of Enamines Followed by Intermolecular Coupling with Unactivated Alkynes. J. Am. Chem. Soc. 132:9585

    Google Scholar 

  117. Song G, Chen D, Pan C-L, Crabtree RH, Li X (2010) Rh-Catalyzed Oxidative Coupling between Primary and Secondary Benzamides and Alkynes: Synthesis of Polycyclic Amides. J. Org. Chem. 75:7487

    Google Scholar 

  118. Guimond N, Fagnou K (2009) Isoquinoline Synthesis via Rhodium-Catalyzed Oxidative Cross-Coupling/Cyclization of Aryl Aldimines and Alkynes. J. Am. Chem. Soc. 131:12050

    Google Scholar 

  119. Hyster TK, Rovis T (2010) Rhodium-Catalyzed Oxidative Cycloaddition of Benzamides and Alkynes via C−H/N−H Activation. J. Am. Chem. Soc. 132:10565

    Google Scholar 

  120. Warratz S, Kornhaaß C, Cajaraville A, NiepötteWarratz S, Kornhaaß C, Cajaraville A, Niepötter B, Stalke D, Ackermann L (2015) Ruthenium(II)-catalyzed C-H activation/alkyne annulation by weak coordination with O2 as the sole oxidant. Angew. Chem. Int. Ed. 54:5513r B, Stalke D, Ackermann L (2015) Angew Chem Int Ed 54:5513

    Google Scholar 

  121. Bechtoldt A, Tirler C, Raghuvanshi K, Warratz S, Kornhaaß C, Ackermann L (2016) Ruthenium Oxidase Catalysis for Site-Selective C-H Alkenylations with Ambient O2 as the Sole Oxidant. Angew. Chem. Int. Ed. 55:264

    Google Scholar 

  122. Tan Y, Hartwig JFJ (2010) Palladium-Catalyzed Amination of Aromatic C−H Bonds with Oxime Esters. Am. Chem. Soc. 132:3676

    Google Scholar 

  123. Ng K-H, Chan ASC, Yu W-Y (2010) Pd-Catalyzed Intermolecular ortho-C−H Amidation of Anilides by N-Nosyloxycarbamate. J. Am. Chem. Soc. 132:12862

    Google Scholar 

  124. Rakshit S, Grohmann C, Besset T, Glorius F (2011) Rh(III)-Catalyzed Directed C−H Olefination Using an Oxidizing Directing Group: Mild, Efficient, and Versatile. J. Am. Chem. Soc. 133:2350

    Google Scholar 

  125. Guimond N, Gouliaras C, Fagnou K (2010) Rhodium(III)-Catalyzed Isoquinolone Synthesis: The N−O Bond as a Handle for C−N Bond Formation and Catalyst Turnover. J. Am. Chem. Soc. 132:6908

    Google Scholar 

  126. Guimond N, Gorelsky SI, Fagnou K (2011) Rhodium(III)-Catalyzed Heterocycle Synthesis Using an Internal Oxidant: Improved Reactivity and Mechanistic Studies. J. Am. Chem. Soc. 133:6449

    Google Scholar 

  127. Ackermann L, Fenner S (2011) Ruthenium-Catalyzed C–H/N–O Bond Functionalization: Green Isoquinolone Syntheses in Water. Org. Lett. 13:6548

    Google Scholar 

  128. Patureau FW, Glorius F (2011) Oxidizing directing groups enable efficient and innovative C-H activation reactions. Angew. Chem. Int. Ed. 50:1977

    Google Scholar 

  129. Chinnagolla RK, Pimparkar S, Jeganmohan M (2012) Ruthenium-Catalyzed Highly Regioselective Cyclization of Ketoximes with Alkynes by C–H Bond Activation: A Practical Route to Synthesize Substituted Isoquinolines. Org. Lett. 14:3032

    Google Scholar 

  130. Mo J, Wang L, Cui X (2015) Rhodium(III)-Catalyzed C–H Activation/Alkyne Annulation by Weak Coordination of Peresters with O–O Bond as an Internal Oxidant. Org. Lett. 17:4960

    Google Scholar 

  131. Liu G, Shen Y, Zhou Z, Lu X (2013) Rhodium(III)-catalyzed redox-neutral coupling of N-phenoxyacetamides and alkynes with tunable selectivity. Angew. Chem. Int. Ed. 52:6033

    Google Scholar 

  132. Hyster TK, Ruhl KE, Rovis T (2013) A Coupling of Benzamides and Donor/Acceptor Diazo Compounds To Form γ-Lactams via Rh(III)-Catalyzed C–H Activation. J. Am. Chem. Soc. 135:5364

    Google Scholar 

  133. Huang X, Huang J, Du C, Zhang X, Song F, You J (2013) N‐Oxide as a Traceless Oxidizing Directing Group: Mild Rhodium(III) –Catalyzed C–H Olefination for the Synthesis of ortho–Alkenylated Tertiary Anilines. Angew. Chem. Int. Ed. 52:12970

    Google Scholar 

  134. Wang H, Grohmann C, Nimphius C, Glorius F (2012) Mild Rh(III)-Catalyzed C–H Activation and Annulation with Alkyne MIDA Boronates: Short, Efficient Synthesis of Heterocyclic Boronic Acid Derivatives. J. Am. Chem. Soc. 134:19592

    Google Scholar 

  135. Kornhaaß C, Kuper C, Ackermann L (2014) Ferrocenylalkynes for Ruthenium–Catalyzed Isohypsic C–H/N–O Bond Functionalizations. Adv. Synth. Catal. 356:1619

    Google Scholar 

  136. Yang F, Ackermann L (2014) Dehydrative C–H/N–OH Functionalizations in H2O by Ruthenium(II) Catalysis: Subtle Effect of Carboxylate Ligands and Mechanistic Insight. J. Org. Chem. 79:12070

    Google Scholar 

  137. Yu S, Liu S, Lan Y, Wan B, Li X (2015) Rhodium-Catalyzed C–H Activation of Phenacyl Ammonium Salts Assisted by an Oxidizing C–N Bond: A Combination of Experimental and Theoretical Studies. J. Am. Chem. Soc. 137:1623

    Google Scholar 

  138. Brasche G, Buchwald SL (2008) C-H functionalization/C-N bond formation: copper-catalyzed synthesis of benzimidazoles from amidines. Angew. Chem. Int. Ed. 47:1932

    Google Scholar 

  139. Mei T-S, Wang X, Yu J-Q (2009) Pd(II)-Catalyzed Amination of C−H Bonds Using Single-Electron or Two-electron Oxidants. J. Am. Chem. Soc. 131:10806

    Google Scholar 

  140. Stokes BJ, Dong H, Leslie BE, Pumphrey AL, Driver TG (2007) Intramolecular C−H Amination Reactions: Exploitation of the Rh2(II)-Catalyzed Decomposition of Azidoacrylates. J. Am. Chem. Soc. 129:7500

    Google Scholar 

  141. Chiba S, Hattori G, Narasaka K (2007) Rh(II)-catalyzed Isomerization of 2-Aryl-2H-azirines to 2,3-Disubstituted Indoles. Chem. Lett. 36:52

    Google Scholar 

  142. Too PC, Noji T, Lim YJ, Li X, Chiba S (2011) Rhodium(III)-Catalyzed Synthesis of Pyridines from α,β-Unsaturated Ketoximes and Internal Alkynes. Synlett 19:2789

    Google Scholar 

  143. Zhang X, Qi Z, Li X (2014) Rhodium(III) –Catalyzed C–C and C–O Coupling of Quinoline N‐Oxides with Alkynes: Combination of C–H Activation with O–Atom Transfer. Angew. Chem. Int. Ed. 126:10970

    Google Scholar 

  144. Wang C, Huang Y (2013) Traceless Directing Strategy: Efficient Synthesis of N-Alkyl Indoles via Redox-Neutral C–H Activation. Org. Lett. 15:5294

    Google Scholar 

  145. Muralirajan K, Haridharan R, Prakash S, Cheng C-H (2015) Rhodium(III) –Catalyzed in situ Oxidizing Directing Group–Assisted C–H Bond Activation and Olefination: A Route to 2‐Vinylanilines. Adv. Syn. Cat. 357:761

    Google Scholar 

  146. Deshmukh DS, Yadav PA, Bhanage BM (2019) Cp*Co(iii)-catalyzed annulation of azines by C–H/N–N bond activation for the synthesis of isoquinolines. Org. Biomol. Chem. 17:3489

    Google Scholar 

  147. Zhang Q-R, Huang J-R, Zhang W, Dong L (2014) Highly Functionalized Pyridines Synthesis from N-Sulfonyl Ketimines and Alkynes Using the N–S Bond as an Internal Oxidant. Org. Lett. 16:1684

    Google Scholar 

  148. Kaishap PP, Sarma B, Gogoi S (2016) The amide C–N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C–H activation and annulation reactions: access to 8-amido isocoumarins. Chem. Commun. 52:9809

    Google Scholar 

  149. Wu Z, Song H, Cui X, Pi C, Du W, Wu Y (2013) Sulfonylation of Quinoline N-Oxides with Aryl Sulfonyl Chlorides via Copper-Catalyzed C–H Bonds Activation. Org. Lett. 15:1270

    Google Scholar 

  150. Ureshino T, Yoshida T, Kuninobu Y, Takai K (2010) Rhodium-Catalyzed Synthesis of Silafluorene Derivatives via Cleavage of Silicon−Hydrogen and Carbon−Hydrogen Bonds. J. Am. Chem. Soc. 132:14324

    Google Scholar 

  151. Kuninobu Y, Yamauchi K, Tamura N, Seiki T, Takai K (2013) Rhodium‐Catalyzed Asymmetric Synthesis of Spirosilabifluorene Derivatives. Angew. Chem. Int. Ed. 52:1520

    Google Scholar 

  152. Zhou Z, Liu G, Chen Y, Lu X (2015) Rhodium(III)‐Catalyzed Redox‐Neutral C–H Annulation of Arylnitrones and Alkynes for the Synthesis of Indole Derivatives. Adv. Synth. Catal. 357:2944

    Google Scholar 

  153. Li B, Pierre H, Dixneuf (2013) sp2 C–H bond activation in water and catalytic cross-coupling reactions. Chem Soc Rev 42:5744

    Google Scholar 

  154. Yang J, Fu T, Long Y, Zhou X (2017) Bifunctional Ion Pair Catalysts from Chiral α‐Amino Acids. Chin J Org Chem 37:1111

    Google Scholar 

  155. Gandeepan P, Kaplaneris N, Santoro S, Vaccaro L, Ackermann L (2019) Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chem Eng 7:8023

    Google Scholar 

  156. Lipshutz BH, Gallou F, Handa S (2016) Evolution of Solvents in Organic Chemistry. ACS Sustainable Chem Eng. 4: 5838

    Google Scholar 

  157. Sheldon R (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem. 7:267

    Google Scholar 

  158. Nie R, Lai R, Lv S, Xu Y, Guo L, Wang Q, Wu Y (2019) Water-mediated C–H activation of arenes with secure carbene precursors: the reaction and its application. Chem Commun 55:11418

    Google Scholar 

  159. Herrerías CI, Yao X, Li Z, Li C-J (2007) Reactions of C−H Bonds in Water. Chem Rev 107:2546 

    Google Scholar 

  160. Ma W, Mei R, Tenti G, Ackermann L (2014) Ruthenium(II)‐Catalyzed Oxidative C–H Alkenylations of Sulfonic Acids, Sulfonyl Chlorides and Sulfonamides. Chem Eur J 20:15248

    Google Scholar 

  161. Upadhyay N, Thorat V H, Sato R, Annamalai P, Chuang S-C, Cheng C-H (2017) Synthesis of isoquinolones via Rh-catalyzed C–H activation of substituted benzamides using air as the sole oxidant in water. Green Chem 19:3219

    Google Scholar 

  162. Gong H, Zeng H, Zhou F, Li C (2015) Rhodium(I)-catalyzed regiospecific dimerization of aromatic acids: two direct C-H bond activations in water. Angew Chem Int Ed 54:5718

    Google Scholar 

  163. Hu X, Yang X, Dai X‐J, Li C‐J (2017) Palladium‐Catalyzed Direct β‐C−H Arylation of Ketones with Arylboronic Acids in Water. Adv Syn Catal 359:2402

    Google Scholar 

  164. Pu F, Liu Z‐W, Zhang L-Y, Fan J, Shi X‐Y (2019) Switchable C−H Alkylation of Aromatic Acids with Maleimides in Water: Carboxyl as a Diverse Directing Group. ChemCatChem 11: 4116

    Google Scholar 

  165. Mitra T, Kundu M, Roy B (2020) Additive-Free, Pd-Catalyzed 3-Amino-1-methyl-1 H-pyridin-2-one-Directed C(sp 2)-H Arylation and Methylation in Water. J Org Chem 85:345

    Google Scholar 

  166. Debabarma S, Md Raja S, Modak B, Maji MS (2019) On-Water Cp*Ir(III)-Catalyzed C-H Functionalization for the Synthesis of Chromones through Annulation of Salicylaldehydes with Diazo-Ketones. J Org Chem 84:6207

    Google Scholar 

  167. Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 7:64

    Google Scholar 

  168. Colacino E, Martinez J, Lamaty F, Patrikeeva LS, Khemchyan LL, Ananikov VP, Beletskaya IP (2012) PEG as an alternative reaction medium in metal-mediated transformations. Coord Chem Rev 256:2893

    Google Scholar 

  169. Li J, Tang M, Zang L, Zhang X, Zhang, Z, Ackermann L (2016) Amidines for Versatile Cobalt(III)-Catalyzed Synthesis of Isoquinolines through C–H Functionalization with Diazo Compounds. Org Lett 18:2742

    Google Scholar 

  170. Wang H, Koeller J, Liu W, Ackermann L (2015) Cobalt(III) −Catalyzed C−H/N−O Functionalizations: Isohypsic Access to Isoquinolines. Chem Eur J 21:15525

    Google Scholar 

  171. Kim SH, Lee HS, Kim SH, Kim JN (2008) Regioselective ortho-hydroxylation of aryl moiety of 2-arylpyridines using Pd(OAc)2/Oxone in PEG-3400/tert-BuOH. Tetrahedron Lett 49:5863

    Google Scholar 

  172. Ma W, Ackermann L (2015) Cobalt(II)-Catalyzed Oxidative C–H Alkenylations: Regio- and Site-Selective Access to Isoindolin-1-one. ACS Catal 5:2822

    Google Scholar 

  173. Kuai C, Wang L, Li B, Yang Z, Cui X (2017) Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group. Org Lett 19:2102

    Google Scholar 

  174. Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89:2

    Google Scholar 

  175. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144

    Google Scholar 

  176. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28:227

    Google Scholar 

  177. Khoo HH, Wong LL, Tan J, Isoni V, Sharratt P (2015) Synthesis of 2-methyl tetrahydrofuran from various lignocellulosic feedstocks: Sustainability assessment via LCA. Resour Conserv Recycl 95:174

    Google Scholar 

  178. Warratz S, Burns DJ, Zhu C, Korvorapun K, Rogge T, Scholz J, Jooss C, Gelman D, (2017) meta-C-H Bromination on Purine Bases by Heterogeneous Ruthenium Catalysis. Angew Chem Int Ed 56:1557

    Google Scholar 

  179. Matsidik R, Luzio A, Hameury S, Komber H, McNeill C R, Caironi M, Sommer M (2016) Effects of PNDIT2 end groups on aggregation, thin film structure, alignment and electron transport in field-effect transistors. J Mater Chem C 4:10371

    Google Scholar 

  180. Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RPH, Melkonyan FS, Facchetti A, Marks TJ (2018) Suppressing Defect Formation Pathways in the Direct C–H Arylation Polymerization of Photovoltaic Copolymers. Macromolecules 51:9140

    Google Scholar 

  181. Monks BM, Fruchey ER, Cook SP (2014) Iron–Catalyzed C(sp2)–H Alkylation of Carboxamides with Primary Electrophiles. Angew Chem Int Ed 53:11065

    Google Scholar 

  182. Fruchey ER, Monks BM, Cook SP (2014) A Unified Strategy for Iron-Catalyzed ortho-Alkylation of Carboxamides. J Am Chem Soc 136:13130

    Google Scholar 

  183. Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584

    Google Scholar 

  184. Zhang Z (2016) Synthesis of γ-Valerolactone from Carbohydrates and its Applications. ChemSusChem 9:156

    Google Scholar 

  185. Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ (2015) Green Solvents in Carbohydrate Chemistry: From Raw Materials to Fine Chemicals. Chem Rev 115:6811

    Google Scholar 

  186. Liguori F, Moreno-Marrodan C, Barbaro P (2015) Environmentally Friendly Synthesis of γ-Valerolactone by Direct Catalytic Conversion of Renewable Sources. ACS Catal 5:1882

    Google Scholar 

  187. Santoro S, Ferlin F, Luciani L, Ackermann L, Vaccaro L (2017) Biomass-derived solvents as effective media for cross-coupling reactions and C–H functionalization processes. Green Chem 19:1601

    Google Scholar 

  188. Santoro S, Marrocchi A, Lanari D, Ackermann L, Vaccaro L (2018) Towards Sustainable C−H Functionalization Reactions: The Emerging Role of Bio‐Based Reaction Media. Chem Eur J 24:13383

    Google Scholar 

  189. Rasina D, Kahler-Quesada A, Ziarelli S, Warratz S, Cao H, Santoro S, Ackermann L, Vaccaro L (2016) Heterogeneous palladium-catalysed Catellani reaction in biomass-derived γ-valerolactone. Green Chem 18:5025

    Google Scholar 

  190. Ackermann L, Vicente R, Born R (2008) Palladium‐Catalyzed Direct Arylations of 1,2,3‐Triazoles with Aryl Chlorides using Conventional Heating. Adv Synth Catal 350:741

    Google Scholar 

  191. Ferlin F, Luciani L, Santoro S, Marrocchi A, Lanari D, Bechtoldt A, Ackermann L, Vaccaro L (2018) A continuous flow approach for the C–H functionalization of 1,2,3-triazoles in γ-valerolactone as a biomass-derived medium. Green Chem 20:2888

    Google Scholar 

  192. Bechtoldt A, Baumert ME, Vaccaro L, Ackermann L (2018) Ruthenium(ii) oxidase catalysis for C–H alkenylations in biomass-derived γ-valerolactone. Green Chem 20:398

    Google Scholar 

  193. Bu Q, Rogge T, Kotek V, Ackermann L (2018) Distal Weak Coordination of Acetamides in Ruthenium(II)‐Catalyzed C−H Activation Processes. Angew Chem Int Ed 57:765

    Google Scholar 

  194. Bu Q, Gońka E, Kuciński K, Ackermann L (2018) Cobalt-Catalyzed Hiyama‐Type C−H Activation with Arylsiloxanes: Versatile Access to Highly ortho‐Decorated Biaryls. Chem Eur J 25:2213

    Google Scholar 

  195. Li BJ, Yang SD, Shi ZJ (2008) Recent Advances in Direct Arylation via Palladium-Catalyzed Aromatic C-H Activation. Synlett 949

    Google Scholar 

  196. Ackermann L, Vicente R, Kapdi AR (2009) Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. Angew Chem Int Ed 48: 9792

    Google Scholar 

  197. Tsai AS, Wilson RM, Harada H, Bergman RG, Ellman JA (2009) Rhodium catalyzed enantioselective cyclization of substituted imidazolesvia C–H bond activation. Chem Commun:3910

    Google Scholar 

  198. Fischmeister C, Doucet H (2011) Greener solvents for ruthenium and palladium-catalysed aromatic C–H bond functionalisation. Green Chem 13:741

    Google Scholar 

  199. Crabtree RH (1993) Photocatalysis in C-H Activation. Springer, Netherlands 

    Google Scholar 

  200. Chen J-R, Hu X-Q, Lu L-Q, Xiao W-J (2016) Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond. Acc Chem Res 49:1911

    Google Scholar 

  201. Capaldo L, Ravelli D (2017) Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis. Eur J Org Chem 15:2056

    Google Scholar 

  202. Protti S, Fagnoni M, Ravelli D (2015) Photocatalytic C–H Activation by Hydrogen‐Atom Transfer in Synthesis. ChemCatChem, 10:1516

    Google Scholar 

  203. Fagnoni M, Dondi D, Ravelli D, Albini A (2007) Photocatalysis for the Formation of the C−C Bond. Chem Rev 107:2725

    Google Scholar 

  204. Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999

    Google Scholar 

  205. Tzirakis MD, Lykakis IN, Orfanopoulos M (2009) Decatungstate as an efficient photocatalyst in organic chemistry. Chem Soc Rev 38:2609

    Google Scholar 

  206. Condie AG, Gonzalez-Gomez JC, Stephenson CRJ (2010) Visible-Light Photoredox Catalysis: Aza-Henry Reactions via C−H Functionalization. J Am Chem Soc 132:1464

    Google Scholar 

  207. Zou Y-Q, Lu L-Q, Fu L, Chang N-J, Chen J-R, Xiao W-J (2011) Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: a photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. Angew Chem Int Ed 50:7171

    Google Scholar 

  208. Xuan J, Cheng Y, An J, Lu LQ, Zhang XX, Xiao W-J (2011) Visible light-induced intramolecular cyclization reactions of diamines: a new strategy to construct tetrahydroimidazoles. Chem Commun 47:8337

    Google Scholar 

  209. Xuan J, Feng Z-J, Duan S-W, Xiao W-J RSC (2012) Room temperature synthesis of isoquino[2,1-a][3,1]oxazine and isoquino[2,1-a]pyrimidine derivatives via visible light photoredox catalysis. Adv 2:4065

    Google Scholar 

  210. Deng Q-H, Zou Y-Q, Lu L-Q, Tang Z-L, Chen J-R, Xiao W-J (2014) De novo synthesis of imidazoles by visible-light-induced photocatalytic aerobic oxidation/[3+2] cycloaddition/aromatization cascade. Chem Asian J 9:2432

    Google Scholar 

  211. Xia X-D, Xuan J, Wang Q, Lu L-Q, Chen J-R, Xiao W-J (2014) Synthesis of 2‐Substituted Indoles through Visible Light-Induced Photocatalytic Cyclizations of Styryl Azides. Adv Synth Catal 356:2807

    Google Scholar 

  212. Rueping M, Leonori D, Poisson T (2011) Visible light mediated azomethine ylide formation—photoredox catalyzed [3+2] cycloadditions. Chem Commun 47:9615

    Google Scholar 

  213. Zhu S, Das A, Bui L, Zhou H, Curran DP, Rueping M (2013) Oxygen Switch in Visible-Light Photoredox Catalysis: Radical Additions and Cyclizations and Unexpected C–C-Bond Cleavage Reactions. J Am Chem Soc 135:1823

    Google Scholar 

  214. Zhang P, Xiao T, Xiong S, Dong X, Zhou L (2014) Synthesis of 3-Acylindoles by Visible-Light Induced Intramolecular Oxidative Cyclization of o-Alkynylated N,N-Dialkylamines. Org Lett 16:3264

    Google Scholar 

  215. Tucker JW, Narayanam JM, Krabbe SW, Stephenson CRJ (2010) Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles. Org Lett12:368

    Google Scholar 

  216. Cheng Y, Yang J, Qu Y, Li P (2012) Aerobic Visible-Light Photoredox Radical C–H Functionalization: Catalytic Synthesis of 2-Substituted Benzothiazoles. Org Lett 14:98

    Google Scholar 

  217. Maity S, Zheng N (2012) A Visible-Light-Mediated Oxidative C–N Bond Formation/Aromatization Cascade: Photocatalytic Preparation of N-Arylindoles. Angew Chem Int Ed 51: 9562

    Google Scholar 

  218. Hernandez-Perez AC, Collins SK (2013) A Visible-Light-Mediated Synthesis of Carbazoles. Angew Chem Int Ed 52:12696

    Google Scholar 

  219. Farney EP, Yoon TP (2014) Visible‐Light Sensitization of Vinyl Azides by Transition‐Metal Photocatalysis. Angew Chem Int Ed 53:793

    Google Scholar 

  220. Gao X-W, Meng Q-Y, Li J-X, Zhong J-J, Lei T, Li X-B, Tung C-H, Wu L-Z (2015) Visible Light Catalysis Assisted Site-Specific Functionalization of Amino Acid Derivatives by C–H Bond Activation without Oxidant: Cross-Coupling Hydrogen Evolution Reaction. ACS Catal 5:2391

    Google Scholar 

  221. Heitz DR, Tellis JC, Molander GA (2016) Photochemical Nickel-Catalyzed C–H Arylation: Synthetic Scope and Mechanistic Investigations. J Am Chem Soc 138:12715

    Google Scholar 

  222. Gauchot V, Sutherland DR, Lee A-L (2017) Dual gold and photoredox catalysed C–H activation of arenes for aryl–aryl cross couplings. Chem Sci 8:2885

    Google Scholar 

  223. Boorman TC, Larrosa I (2011) Gold-mediated C–H bond functionalisation. Chem Soc Rev 40:1910

    Google Scholar 

  224. Ren X, Wang Q, Yu W, Zhan X, Yao Y, Qin B, Dong M, He X (2017) Photoredox catalytic intramolecular imine C–H bond functionalization using ligand free Cu(ii) salts. Org Chem Front 4:2022

    Google Scholar 

  225. Kaplaneris N, Bisticha A, Papadopoulos GN, Limnios D, Kokotos CG (2017) Photoorganocatalytic synthesis of lactones via a selective C–H activation–alkylation of alcohols. Green Chem 19:4451

    Google Scholar 

  226. Capaldo L, Merli D, Fagnoni M, Ravelli D (2019) Visible Light Uranyl Photocatalysis: Direct C–H to C–C Bond Conversion. ACS Catalysis 9:3054

    Google Scholar 

  227. Li Y, Lei M, Gong L (2019) Photocatalytic regio- and stereoselective C(sp3)–H functionalization of benzylic and allylic hydrocarbons as well as unactivated alkanes. Nat Catal 2:1016

    Google Scholar 

  228. Sagadevan A, Greaney MF (2019) meta‐Selective C−H Activation of Arenes at Room Temperature Using Visible Light: Dual‐Function Ruthenium Catalysis. Angew Chem Int Ed 58:9826

    Google Scholar 

  229. Noack M, Göttlich R (2020) Copper (I) catalysed cyclisation of unsaturated N-benzoyloxyamines: an aminohydroxylation via radicals . Chem Commun 38:536 

    Google Scholar 

  230. Banwell MG, Lupton DW (2006) Tandem Radical Cyclization Reactions, Initiated at Nitrogen, as an Approach to the CDE-Tricyclic Cores of Certain Post-secodine Alkaloids. Heterocycles 68:71

    Google Scholar 

  231. Sirinimal HS, Hebert SP, Samala G, Chen H, Rosenhauer GJ, Schlegel HB, Stockdill JL (2018) A Synthetic and Computational Study of Tin-Free Reductive Tandem Cyclizations of Neutral Aminyl Radicals. Org Lett 20:6340

    Google Scholar 

  232. Li Y, Liang Y, Dong J, Deng Y, Zhao C, Su Z, Guan W, Bi X, Liu Q, Fu J (2019) Directed Copper-Catalyzed Intermolecular Aminative Difunctionalization of Unactivated Alkenes. J Am Chem Soc 141:18475

    Google Scholar 

  233. Supranovich VI, Levin VV, Dilman AD (2019) Radical Addition to N-Tosylimines via C–H Activation Induced by Decatungstate Photocatalyst. Org Lett 21:4271

    Google Scholar 

  234. Xie X, Liu J, Wang L, Wang M (2019) Visible‐Light‐Induced Alkynylation of α‐C–H Bonds of Ethers with Alkynyl Bromides without External Photocatalyst. Eur J Org Chem 2020:1534

    Google Scholar 

  235. Fang J, Dong W-L, Xu G-Q, Xu P-F (2019) Photocatalyzed Metal-Free Alkylheteroarylation of Unactivated Olefins via Direct Acidic C(sp3)–H Bond Activation. Org Lett 21:4480

    Google Scholar 

  236. Li L, Luo H, Zhao Z, Li Y, Zhou Q, Xu J, Li J, Ma Y-N (2019) Photoredox-Catalyzed Remote Difunctionalizations of Alkenes To Synthesize Fluoroalkyl Ketones with Dimethyl Sulfoxide as the Oxidant. Org Lett 21:9228

    Google Scholar 

  237. Si X, Zhang L, Hashmi ASK (2019) Benzaldehyde- and Nickel-Catalyzed Photoredox C(sp3)–H Alkylation/Arylation with Amides and Thioethers. Org Lett 21:6329

    Google Scholar 

  238. Yang X, Zhu Y, Xie Z, Li Y, Zhang Y (2020) Visible-Light-Induced Charge Transfer Enables Csp3–H Functionalization of Glycine Derivatives: Access to 1,3-Oxazolidines. Org Lett 22:1638

    Google Scholar 

  239. T Noel (2017) Photochemical Processes in Continuous-Flow Reactors, World Scientific Singapore

    Google Scholar 

  240. Cambie D, Bottecchia C, Straathof NJW, Hessel V, Noel T (2016) Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chem Rev 116:10276

    Google Scholar 

  241. Lesieur M, Genicot C, Pasau P (2018) Development of a Flow Photochemical Aerobic Oxidation of Benzylic C–H Bonds. Org Lett 20:1987

    Google Scholar 

  242. Laudadio G, Govaerts S, Wang Y, Ravelli D, Koolman HF, Fagnoni M, Djuric SW, Noel T (2018) Selective C(sp 3 )-H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angew Chem Int Ed 57:4078

    Google Scholar 

  243. Bottecchia C, Martín R, Abdiaj I, Crovini E, Alcazar J, Orduna J, Blesa MJ, Carrillo JR, Prieto P, Noёl T (2019) De novo Design of Organic Photocatalysts: Bithiophene Derivatives for the Visible‐light Induced C−H Functionalization of Heteroarenes. Adv Synth Catal 361:945

    Google Scholar 

  244. Larhed M, Moberg C, Hallberg A (2020) Microwave-accelerated homogeneous catalysis in organic chemistry. Acc Chem Res 35:717

    Google Scholar 

  245. Wathey B, Tierney J, Lidstrom P, Westman J (2002) The impact of microwave-assisted organic chemistry on drug discovery. Drug DiscoVery Today 7:373

    Google Scholar 

  246. Lew A, Krutzik PO, Hart ME, Chamberlin AR (2002) Increasing Rates of Reaction: Microwave-Assisted Organic Synthesis for Combinatorial Chemistry. J Comb Chem 4:95

    Google Scholar 

  247. Baghbanzadeh M, Pilger C, Kappe CO (2011) Palladium-Catalyzed Direct Arylation of Heteroaromatic Compounds: Improved Conditions Utilizing Controlled Microwave Heating. J Org Chem 76:8138

    Google Scholar 

  248. Mehta VP, Van der Eycken E (2011) Microwave-assisted C–C bond forming cross-coupling reactions: an overview. Chem Soc Rev 40:4925

    Google Scholar 

  249. Sharma A, Vacchani D, Van der Eycken E (2013) Developments in Direct C–H Arylation of (Hetero)Arenes under Microwave Irradiation. Chem Eur J 19:1158

    Google Scholar 

  250. Gupta AK, Singh N, Singh KN (2013) Microwave Assisted Organic Synthesis: Cross Coupling and Multicomponent Reactions. Curr Org Chem 17:474

    Google Scholar 

  251. Besson T, Fruit C (2016) Recent Developments in Microwave-Assisted Metal-Catalyzed C–H Functionalization of Heteroarenes for Medicinal Chemistry and Material Applications. Synthesis 48:3879

    Google Scholar 

  252. Baber RA, Bedford RB, Betham M, Blake ME, Coles SJ, Haddow MF, Hursthouse MB, Orpen AG, Pilarski LT, Pringle PG, Wingad RL, (2006) Chiral palladium bis(phosphite) PCP-pincer complexes via ligand C-H activation. Chem Commun 37:3880

    Google Scholar 

  253. Sridharan V, Martín MA, Menéndez JC (2009) Acid-Free Synthesis of Carbazoles and Carbazolequinones by Intramolecular Pd‐Catalyzed, Microwave-Assisted Oxidative Biaryl Coupling Reactions - Efficient Syntheses of Murrayafoline A, 2-Methoxy-3-methylcarbazole, and Glycozolidine. Eur J Org Chem 27:4614

    Google Scholar 

  254. Mahindra A, Bagra N, Jain R (2013) Palladium-Catalyzed Regioselective C-5 Arylation of Protected l-Histidine: Microwave-Assisted C–H Activation Adjacent to Donor Arm. J Org Chem 78:10954

    Google Scholar 

  255. Choi S J, Kuwabara J, Kanbara T (2013) Microwave-Assisted Polycondensation via Direct Arylation of 3,4-Ethylenedioxythiophene with 9,9-Dioctyl-2,7-dibromofluorene. ACS Sustainable Chem Eng 1:878

    Google Scholar 

  256. Kokornaczyk A, Schepmann D, Yamaguchi J, Itamib K, Wünsch B (2016) Microwave-assisted regioselective direct C–H arylation of thiazole derivatives leading to increased σ1 receptor affinity. Med Chem Commun 7:327

    Google Scholar 

  257. Baladi T, Granzhan A, Piguel S (2016) Microwave‐Assisted C‐2 Direct Alkenylation of Imidazo[4,5‐b]pyridines: Access to Fluorescent Purine Isosteres with Remarkably Large Stokes Shifts. Eur J Org Chem 2016:2421

    Google Scholar 

  258. Harari M, Couly F, Fruit C, Besson T (2016) Pd-Catalyzed and Copper Assisted Regioselective Sequential C2 and C7 Arylation of Thiazolo[5,4-f]quinazolin-9(8H)-one with Aryl Halides. Org Lett 18:3282

    Google Scholar 

  259. Godeau J, Harari M, Laclef S, Deau E, Fruit C, Besson T (2015) Cu/Pd‐Catalyzed C‐2–H Arylation of Quinazolin‐4(3H)‐ones with (Hetero)aryl Halides. Eur J Org Chem 35: 7705

    Google Scholar 

  260. Li S, Wan P, Ai J, Sheng R, Hu Y, Hu Y (2017) Palladium-Catalyzed, Silver-Assisted Direct C-5-H Arylation of 3‐Substituted 1,2,4‐Oxadiazoles under Microwave Irradiation. Adv Synth Catal 359:772

    Google Scholar 

  261. Khlebnikov V, Heckenroth M, Müller-Bunz H, Albrecht M (2013) Platinum(ii) and platinum(iv) complexes stabilized by abnormal/mesoionic C4-bound dicarbenes. Dalton Trans 42:4197

    Google Scholar 

  262. Diness F, Begtrup M (2014) Sequential Direct SNAr Reactions of Pentafluorobenzenes with Azole or Indole Derivatives. Org Lett 16:3130

    Google Scholar 

  263. Mfuh AM, Larionov OV (2015) Heterocyclic N-Oxides - An Emerging Class of Therapeutic Agents. Curr Med Chem 22:2819

    Google Scholar 

  264. Stephens DE, Lakey-Beita J, Atesin AC, Ateşin TA, Chavez G, Arman HD, Larionov OV (2015) Palladium-Catalyzed C8-Selective C–H Arylation of Quinoline N-Oxides: Insights into the Electronic, Steric, and Solvation Effects on the Site Selectivity by Mechanistic and DFT Computational Studies. ACS Catal 5:167

    Google Scholar 

  265. Stephens DE, Lakey-Beita J, Chavez G, Ilie C, Arman HD, Larionov OV (2015) Experimental and mechanistic analysis of the palladium-catalyzed oxidative C8-selective C-H homocoupling of quinoline N-oxides. Chem Commun 51:9507

    Google Scholar 

  266. Vachhani DD, Sharma A, Van der Eycken E (2013) Copper-catalyzed direct secondary and tertiary C-H alkylation of azoles through a heteroarene-amine-aldehyde/ketone coupling reaction. Angew Chem Int Ed 52:2547

    Google Scholar 

  267. Huang J, Huang Y, Wang T, Huang Q, Wang Z, Chen Z (2017) Microwave-Assisted Cp*CoIII-Catalyzed C–H Activation/Double C–N Bond Formation Reactions to Thiadiazine 1-Oxides. Org Lett 19:1128

    Google Scholar 

  268. Sharma N, Bahadur V, Sharma UK, Saha D, Li Z, Kumar Y, Colaers J, Singh BK, Van der Eycken EV (2018) Microwave-Assisted Ruthenium-Catalysed ortho-C−H Functionalization of N‐Benzoyl α‐Amino Ester Derivatives. Adv Syn Catal 360:3083

    Google Scholar 

  269. Tan KL, Vasudevan A, Bergman RG, Ellman JA, Souers AJ (2003) Microwave-Assisted C−H Bond Activation: A Rapid Entry into Functionalized Heterocycles. Org Lett 5:2131

    Google Scholar 

  270. Lewis JC, Wu JY, Bergman RG, Ellman JA (2006) Microwave-Promoted Rhodium-Catalyzed Arylation of Heterocycles through C–H Bond Activation. Angew Chem Int Ed 45:1589

    Google Scholar 

  271. Lee H, Sim Y-K, Park J-W, Jun C-H (2014) Microwave-Assisted, Rhodium(III)-Catalyzed N-Annulation Reactions of Aryl and α,β‐Unsaturated Ketones with Alkynes. Chem Eur J 20:323

    Google Scholar 

  272. Song L, Tian G, Blanpain A, Van Meervelt L, Van der Eycken EV (2019) Diversification of Peptidomimetics and Oligopeptides through Microwave‐Assisted Rhodium(III)‐Catalyzed Intramolecular Annulation. Adv Syn Catal 361:4442

    Google Scholar 

  273. Sherikar MS, Prabhu KR (2019) Weak Coordinating Carboxylate Directed Rhodium(III)-Catalyzed C–H Activation: Switchable Decarboxylative Heck-Type and [4 + 1] Annulation Reactions with Maleimides. Org Lett 21:4525 

    Google Scholar 

  274. Hoang GL, Streit AD, Ellman JA (2018) Three-Component Coupling of Aldehydes, Aminopyrazoles, and Sulfoxonium Ylides via Rhodium(III)-Catalyzed Imidoyl C–H Activation: Synthesis of Pyrazolo[1,5-a]pyrimidines. J Org Chem 83:15347

    Google Scholar 

  275. Ackermann L (2020) Metalla-electrocatalyzed C–H Activation by Earth-Abundant 3d Metals and Beyond. Acc Chem Res 53:84

    Google Scholar 

  276. Jiao K-J, Xing Y-K, Yang Q-L, Qiu H, Mei T-S (2020) Site-Selective C–H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis. Acc Chem Res 53:300

    Google Scholar 

  277. Kärkäs MD (2018) Electrochemical strategies for C–H functionalization and C–N bond formation. Chem Soc Rev 47:5786

    Google Scholar 

  278. Li L-J, Jiang Y-Y, Lam CM, Zeng C-C, Hu L-M, Little RD (2015) Aromatic C–H Bond Functionalization Induced by Electrochemically in Situ Generated Tris(p-bromophenyl)aminium Radical Cation: Cationic Chain Reactions of Electron-Rich Aromatics with Enamides. J Org Chem 80:11021

    Google Scholar 

  279. Ma C, Zhao C-Q, Li Y-Q, Zhang L-P, Xu X-T, Zhang K, Mei TS (2017) Palladium-catalyzed C–H activation/C–C cross-coupling reactions via electrochemistry. Chem Commun 53:12189

    Google Scholar 

  280. Sauermann N, Meyer T, Tian C, Ackermann L (2017) Electrochemical Cobalt-Catalyzed C–H Oxygenation at Room Temperature. J Am Chem Soc 139:18452

    Google Scholar 

  281. Zhang S, Li L, Wang H, Li Q, Liu W, Xu K, Zeng C (2018) Scalable Electrochemical Dehydrogenative Lactonization of C(sp2/sp3)–H Bonds. Org Lett 20:252

    Google Scholar 

  282. Liang S, Zeng C-C, Tian H-Y, Sun B-G, Luo X-G, Ren F (2018) Redox Active Sodium Iodide/Recyclable Heterogeneous Solid Acid: An Efficient Dual Catalytic System for Electrochemically Oxidative α‐C−H Thiocyanation and Sulfenylation of Ketones. Adv Syn Catal 360:1444

    Google Scholar 

  283. Qiu Y, Kong W-J, Struwe J, Sauermann N, Rogge T, Scheremetjew A, Ackermann L (2018) Electrooxidative Rhodium-Catalyzed C-H/C-H Activation: Electricity as Oxidant for Cross-Dehydrogenative Alkenylation. Angew Chem Int Ed 57:5828

    Google Scholar 

  284. Zhang S-K, Samanta RC, Sauermann N, Ackermann L (2018) Nickel‐Catalyzed Electrooxidative C−H Amination: Support for Nickel(IV). Chem Eur J 24:19166

    Google Scholar 

  285. Qiu Y, Stangier M, Meyer TH, Oliveira JC, Ackermann L (2018) Iridium-Catalyzed Electrooxidative C-H Activation by Chemoselective Redox-Catalyst Cooperation. Angew Chem Int Ed 57:14179

    Google Scholar 

  286. Zeng L, Li H, Tang S, Gao X, Deng Y, Zhang G, Pao C-W, Chen J-L, Lee J-F, Lei A (2018) Cobalt-Catalyzed Electrochemical Oxidative C–H/N–H Carbonylation with Hydrogen Evolution. ACS Catal 8:5448

    Google Scholar 

  287. Zhao H-B, Xu P, Song J, Xu H-C (2018) Cathode Material Determines Product Selectivity for Electrochemical C-H Functionalization of Biaryl Ketoximes. Angew Chem Int Ed 57:15153

    Google Scholar 

  288. Mei R, Koeller J, Ackermann L (2018) Electrochemical ruthenium-catalyzed alkyne annulations by C–H/Het–H activation of aryl carbamates or phenols in protic media. Chem Commun, 54:12879

    Google Scholar 

  289. Mei R, Sauermann N, Oliveira JCA, Ackermann L (2018) Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C–H/N–H Activation with Internal Alkynes. J Am Chem Soc 140:7913

    Google Scholar 

  290. Meyer TH, Oliveira JCA, Sau SC, Ang NWJ, Ackermann L (2018) Electrooxidative Allene Annulations by Mild Cobalt-Catalyzed C–H Activation. ACS Catalysis 8:9140

    Google Scholar 

  291. Mei R, Fang X, He L, Sun J, Zou L, Mab W, Ackermann L (2020) Cobaltaelectro-catalyzed oxidative allene annulation by electro-removable hydrazides. Chem Commun 56:1393

    Google Scholar 

  292. Wang Z-Q, Hou C, Zhong Y-F, Lu Y-X, Mo Z-Y, Pan Y-M, Tang H-T (2019) Electrochemically Enabled Double C–H Activation of Amides: Chemoselective Synthesis of Polycyclic Isoquinolinones. Org Lett 21:9841

    Google Scholar 

  293. Kong W-J, Finger LH, Messinis AM, Kuniyil R, Oliveira JCA, Ackermann L (2019) Flow Rhodaelectro-Catalyzed Alkyne Annulations by Versatile C–H Activation: Mechanistic Support for Rhodium(III/IV). J Am Chem Soc 141:17198

    Google Scholar 

  294. Kong W-J, Finger LH, Oliveira JCA, Ackermann L (2019) Rhodaelectrocatalysis for Annulative C-H Activation: Polycyclic Aromatic Hydrocarbons through Versatile Double Electrocatalysis. Angew Chem Int Ed 58:6342

    Google Scholar 

  295. Huang M, Dai J, Cheng X, Ding M (2019) Electrochemical Approach for Direct C–H Phosphonylation of Unprotected Secondary Amine. Org Lett 21:7759

    Google Scholar 

  296. He T-J, Ye Z, Ke Z, Huang J-M (2019) Stereoselective synthesis of sulfur-containing β-enaminonitrile derivatives through electrochemical Csp3–H bond oxidative functionalization of acetonitrile. Nature Commun 10:1

    Google Scholar 

  297. Kumar GS, Peshkov A, Brzozowska A, Nikolaienko P, Zhu C, Rueping M (2020) Nickel‐Catalyzed Chain‐Walking Cross‐Electrophile Coupling of Alkyl and Aryl Halides and Olefin Hydroarylation Enabled by Electrochemical Reduction. Angew Chem 132:6513

    Google Scholar 

  298. Meyer TH, Chesnokov GA, Ackermann L (2020) Cobalta‐Electrocatalyzed C−H Activation in Biomass‐Derived Glycerol: Powered by Renewable Wind and Solar Energy. ChemSusChem 13:668

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deshmukh, D.S., Shende, V.S., Bhanage, B.M. (2021). Insights into Sustainable C–H Bond Activation. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65021-6_8

Download citation

Publish with us

Policies and ethics