Skip to main content

Zinc Electrodeposition Morphology

  • Chapter
  • First Online:
The Zinc/Bromine Flow Battery

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

The electrochemical performance of the zinc half-cell is strongly linked to the quality and morphology of zinc electrodeposits generated during the charging phase. The structure of the zinc plating also dictates performance characteristics such as efficiencies, charge densities and peak current values during the subsequent discharge phase. The previous chapter described and analyzed the considerations arising from chemical reactions occurring at the zinc-side electrode. Following from that point, this chapter describes the underlying reasons why different zinc plating morphologies are obtained under different conditions and how certain behavior such as dendritic growth can be detrimental to Zn/Br performance. Promising methods for solving such issues are then identified from a wide range of literature including studies directly related to redox flow batteries as well as from the highly established electroplating industry. The primary means of controlling zinc crystal structure involves the use of organic additives to achieve a specific growth template and rate. Additionally, the merits and drawbacks of alternative strategies such as controlling deposition rates are investigated in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conover DR (2013) Measuring and expressing the performance of energy storage systems. In: Proceedings of the 2013 electrical energy storage applications and technologies (EESAT) biennial international conference

    Google Scholar 

  2. Guo L, Searson PC (2010) On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochi Acta 55:4086–4091. doi:10.1016/j.electacta.2010.02.038

    Article  Google Scholar 

  3. Sun X, Souier T, Chiesa M, Vassallo A (2014) Effect of surface transport properties on the performance of carbon plastic electrodes for flow battery applications. Electrochim Acta 148:104–110. doi:10.1016/j.electacta.2014.10.003

    Article  Google Scholar 

  4. Abd El Rehim SS, Abd El Wahaab SM, Fouad EE, Hassan HH (1994) Effect of some variables on the electroplating of zinc from acidic acetate baths. J Appl Electrochem 24:350–354. doi:10.1007/BF00242065

    Article  Google Scholar 

  5. Park H, Szpunar JA (1998) The role of texture and morphology in optimizing the corrosion resistance of zinc-based electrogalvanized coatings. Corros Sci 40:525–545. doi: 10.1016/S0010-938X(97)00148-0

    Google Scholar 

  6. Loto CA (2012) Electrodeposition of zinc from acid based solutions: a review and experimental study. Asian J Appl Sci 5:314–326. doi:10.3923/ajaps.2012.314.326

    Article  Google Scholar 

  7. John S, Silaimani SM, Anand V, Vasudevan T (2002) Zinc-Manganese alloy plating-A critical review. Bull Electrochem 18:407–412

    Google Scholar 

  8. Malathy P (2000) Critical review on alloy plating: a viable alternative to conventional plating. Bull Electrochem 16:559–566

    Google Scholar 

  9. Zhang XG (1996) Corrosion and electrochemistry of zinc. Springer, New York

    Book  Google Scholar 

  10. Boto K (1975) Organic additives in zinc electroplating. Electrodepos Surf Treat 3:77–95. doi:10.1016/0300-9416(75)90048-6

    Article  Google Scholar 

  11. Cathro KJ (1986) Zinc-bromine batteries for energy storage applications: volume 541 of end of grant report. Department of Resources and Energy, Canberra

    Google Scholar 

  12. Zemanová M (2009) Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current. Chem Pap 63:574–578. doi:10.2478/s11696-009-0051-5

    Google Scholar 

  13. Saber K, Koch C, Fedkiw P (2003) Pulse current electrodeposition of nanocrystalline zinc. Mater Sci Eng: A 341:174–181. doi:10.1016/S0921-5093(02)00198-3

    Article  Google Scholar 

  14. Devos O (1998) Magnetic field effects on nickel electrodeposition. J Electrochem Soc 145:401–405. doi:10.1149/1.1838276

    Article  Google Scholar 

  15. Coey JMD, Hinds G, Lyons MEG (1999) Magnetic-field effects on fractal electrodeposits. Europhys Lett (EPL) 47:267–272. doi:10.1209/epl/i1999-00382-3

    Article  Google Scholar 

  16. Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill Professional, New York

    Google Scholar 

  17. Putt RA (1979) Assessment of technical and economic feasibility of zinc/bromine batteries for utility load leveling. Palo Alto

    Google Scholar 

  18. Clark N, Eidler P, Lex P (1999) Development of zinc/bromine batteries for load-leveling applications: phase 2 final report (Sandia Report SAND99-2691). Albuquerque, New Mexico 87185 and Livermore, California 94550

    Google Scholar 

  19. Poon G (2008) Bromine complexing agents for use in vanadium bromide (V/Br) redox flow cell. The University of New South Wales

    Google Scholar 

  20. Kim S-J, Kim H-T, Park S-M (2004) Effects of o-vanillin as a brightener on zinc electrodeposition at iron electrodes. J Electrochem Soc 151:C850–C854. doi:10.1149/1.1814033

    Article  Google Scholar 

  21. Vlasa A, Varvara S, Pop A et al (2010) Electrodeposited Zn–TiO2 nanocomposite coatings and their corrosion behavior. J Appl Electrochem 40:1519–1527. doi:10.1007/s10800-010-0130-x

    Article  Google Scholar 

  22. Yogesha S, Hegde AC (2011) Optimization of bright zinc-nickel alloy bath for better corrosion resistance. Trans Indian Inst Met 63:841–846. doi:10.1007/s12666-010-0128-4

    Article  Google Scholar 

  23. Bhat R, Udaya BK, Chitharanjan Hegde A (2011) Optimization of deposition conditions for bright Zn–Fe coatings and its characterization. Prot Met Phys Chem Surf 47:645–653. doi:10.1134/S2070205111050030

    Article  Google Scholar 

  24. Iacovangelo CD (1985) Parametric study of zinc deposition on porous carbon in a flowing electrolyte cell. J Electrochem Soc 132:851–857. doi:10.1149/1.2113972

    Article  Google Scholar 

  25. Gomes A, Viana AS, Silva MI (2007) Potentiostatic and AFM morphological studies of Zn electrodeposition in the presence of surfactants. J Electrochem Soc 154:452–461. doi:10.1149/1.2752984

    Article  Google Scholar 

  26. Alfantazi AM, Dreisinger DB (2003) An investigation on the effects of orthophenylene diamine and sodium lignin sulfonate on zinc electrowinning from industrial electrolyte. Hydrometallurgy 69:99–107. doi:10.1016/S0304-386X(03)00030-6

    Article  Google Scholar 

  27. Muralidhara HB, Naik YA, Venkatesha TV (2006) Effect of condensation product of glycyl-glycine and furfural on electrodeposition of zinc from sulphate bath. Bull Mater Sci 29:497–503. doi:10.1007/BF02914081

    Article  Google Scholar 

  28. Ibrahim MA (2000) Improving the throwing power of acidic zinc sulfate electroplating baths. J Chem Technol Biotechnol 75:745–755. doi:10.1002/1097-4660(200008)75:8<745:AID-JCTB274>3.0.CO;2-5

    Article  Google Scholar 

  29. Hémery C-V, Pra F, Robin J-F, Marty P (2014) Experimental performances of a battery thermal management system using a phase change material. J Power Sources 270:349–358. doi:10.1016/j.jpowsour.2014.07.147

    Article  Google Scholar 

  30. Muralidhara HB, Arthoba Naik Y (2008) Electrochemical deposition of nanocrystalline zinc on steel substrate from acid zincate bath. Surf Coat Technol 202:3403–3412. doi:10.1016/j.surfcoat.2007.12.012

    Article  Google Scholar 

  31. Li MC, Jiang LL, Zhang WQ et al (2007) Electrodeposition of nanocrystalline zinc from acidic sulfate solutions containing thiourea and benzalacetone as additives. J Solid State Electrochem 11:549–553. doi:10.1007/s10008-006-0194-z

    Article  Google Scholar 

  32. Saba AE, Elsherief AE (2000) Continuous electrowinning of zinc. Hydrometallurgy 54:91–106. doi:10.1016/S0304-386X(99)00061-4

    Article  Google Scholar 

  33. Xia Z, Yang S, Tang M (2015) Nucleation and growth orientation of zinc electrocrystallization in the presence of gelatin in Zn(II)–NH3–NH4Cl–H2O electrolytes. RSC Adv 5:2663–2668. doi:10.1039/C4RA12290A

    Article  Google Scholar 

  34. Sekar R, Jayakrishnan S (2006) Characteristics of zinc electrodeposits from acetate solutions. J Appl Electrochem 36:591–597. doi:10.1007/s10800-005-9111-x

    Article  Google Scholar 

  35. Kavitha B, Santhosh P, Renukadevi M et al (2006) Role of organic additives on zinc plating. Surf Coat Technol 201:3438–3442. doi:10.1016/j.surfcoat.2006.07.235

    Article  Google Scholar 

  36. Punith Kumar MK, Srivastava C (2014) Enhancement of corrosion resistance of zinc coatings using green additives. J Mater Eng Perform 23:3418–3424. doi:10.1007/s11665-014-1141-2

    Article  Google Scholar 

  37. Li Q, Feng Z, Zhang J et al (2014) Pulse reverse electrodeposition and characterization of nanocrystalline zinc coatings. RSC Adv 4:52562–52570. doi:10.1039/C4RA09421B

    Article  Google Scholar 

  38. Naik YA, Venkatesha TV (2005) A new condensation product for zinc plating from non-cyanide alkaline bath. Bull Mater Sci 28:495–501. doi:10.1007/BF02711243

    Article  Google Scholar 

  39. Pushpavanam M (2006) Role of additives in bright zinc deposition from cyanide free alkaline baths. J Appl Electrochem 36:315–322. doi:10.1007/s10800-005-9076-9

    Article  Google Scholar 

  40. Pereira MS, Barbosa LL, Souza CAC et al (2006) The influence of sorbitol on zinc film deposition, zinc dissolution process and morphology of deposits obtained from alkaline bath. J Appl Electrochem 36:727–732. doi:10.1007/s10800-006-9133-z

    Article  Google Scholar 

  41. Hsieh J-C, Hu C-C, Lee T-C (2009) Effects of polyamines on the deposition behavior and morphology of zinc electroplated at high-current densities in alkaline cyanide-free baths. Surf Coat Technol 203:3111–3115. doi:10.1016/j.surfcoat.2009.03.035

    Article  Google Scholar 

  42. Goff AH-L, Joiret S, Saïdani B, Wiart R (1989) In-situ Raman spectroscopy applied to the study of the deposition and passivation of zinc in alkaline electrolytes. J Electroanal Chem Interfacial Electrochem 263:127–135. doi:10.1016/0022-0728(89)80129-9

    Article  Google Scholar 

  43. Keist JS, Orme CA, Wright PK, Evans JW (2015) An in situ AFM study of the evolution of surface roughness for zinc electrodeposition within an imidazolium based ionic liquid electrolyte. Electrochim Acta 152:161–171. doi:10.1016/j.electacta.2014.11.091

    Google Scholar 

  44. Azaceta E, Tena-Zaera R, Marcilla R et al (2009) Electrochemical deposition of ZnO in a room temperature ionic liquid: 1-Butyl-1-methylpyrrolidinium bis(trifluoromethane sulfonyl)imide. Electrochem Commun 11:2184–2186. doi:10.1016/j.elecom.2009.09.026

    Article  Google Scholar 

  45. Yang H, Reddy RG (2014) Electrochemical deposition of zinc from zinc oxide in 2:1 urea/choline chloride ionic liquid. Electrochim Acta 147:513–519. doi:10.1016/j.electacta.2014.09.137

    Article  Google Scholar 

  46. Zhang Q, Yu X, Hua Y, Xue W (2014) The effect of quaternary ammonium-based ionic liquids on copper electrodeposition from acidic sulfate electrolyte. J Appl Electrochem 45:79–86. doi:10.1007/s10800-014-0774-z

    Article  Google Scholar 

  47. Nayana KO, Venkatesha TV, Praveen BM, Vathsala K (2010) Synergistic effect of additives on bright nanocrystalline zinc electrodeposition. J Appl Electrochem 41:39–49. doi:10.1007/s10800-010-0205-8

    Article  Google Scholar 

  48. Nayana KO, Venkatesha TV (2011) Synergistic effects of additives on morphology, texture and discharge mechanism of zinc during electrodeposition. J Electroanal Chem 663:98–107. doi:10.1016/j.jelechem.2011.10.001

    Article  Google Scholar 

  49. Hsieh J-C, Hu C-C, Lee T-C (2008) The synergistic effects of additives on improving the electroplating of zinc under high current densities. J Electrochem Soc 155:D675–D681. doi:10.1149/1.2967343

    Article  Google Scholar 

  50. Yang JH, Yang HS, Ra HW et al (2015) Effect of a surface active agent on performance of zinc/bromine redox flow batteries: Improvement in current efficiency and system stability. J Power Sources 275:294–297. doi:10.1016/j.jpowsour.2014.10.208

    Article  Google Scholar 

  51. Trejo G, Ortega R, Meas Y (2002) The effect of polyethylene glycol 8000 additive on the deposition mechanism and morphology of zinc deposits. Plat Surf Finish 89:84–87

    Google Scholar 

  52. Kim J-W, Lee J-Y, Park S-M (2004) Effects of organic additives on zinc electrodeposition at iron electrodes studied by EQCM and in situ STM. Langmuir: ACS J Surf Colloids 20:459–466

    Article  Google Scholar 

  53. Lee J-Y, Kim J-W, Lee M-K et al (2004) Effects of organic additives on initial stages of zinc electroplating on iron. J Electrochem Soc 151:C25. doi:10.1149/1.1627344

    Article  Google Scholar 

  54. Mouanga M, Ricq L, Douglade J, Berçot P (2009) Corrosion behaviour of zinc deposits obtained under pulse current electrodeposition: effects of coumarin as additive. Corros Sci 51:690–698. doi:10.1016/j.corsci.2008.12.020

    Article  Google Scholar 

  55. Mouanga M, Ricq L, Douglade G et al (2006) Influence of coumarin on zinc electrodeposition. Surf Coat Technol 201:762–767. doi:10.1016/j.surfcoat.2005.12.036

    Article  Google Scholar 

  56. Monev M, Mirkova L, Krastev I et al (1998) Effect of brighteners on hydrogen evolution during zinc electroplating from zincate electrolytes. J Appl Electrochem 28:1107–1112. doi:10.1023/A:1003443219874

    Article  Google Scholar 

  57. Cheng C-C (1997) Nickel deposition in the presence of coumarin. J Electrochem Soc 144:3050. doi:10.1149/1.1837957

    Article  Google Scholar 

  58. Singh K, Pathak RK (1994) Electrosynthesis and impedance studies on zinc selenide. Electrochim Acta 39:2693–2697. doi:10.1016/0013-4686(94)00298-3

    Article  Google Scholar 

  59. Singh DDN, Dey M, Singh V (2002) Role of buffering and complexing agents in zinc plating chloride baths on corrosion resistance of produced coatings. Corrosion 58:971–980. doi:10.5006/1.3280787

    Article  Google Scholar 

  60. Chung SC, Cheng JR, Chiou SD, Shih HC (2000) EIS behavior of anodized zinc in chloride environments. Corros Sci 42:1249–1268. doi:10.1016/S0010-938X(99)00129-8

    Article  Google Scholar 

  61. Monzon LMA, Klodt L, Coey JMD (2012) Nucleation and electrochemical growth of zinc crystals on polyaniline films. J Phys Chem C 116:18308–18317. doi:10.1021/jp306071c

    Article  Google Scholar 

  62. Matsushita M, Sano M, Hayakawa Y, et al (1984) Fractal structures of zinc metal leaves grown by electrodeposition. Phys Rev Lett 53:286–289. doi:10.1103/PhysRevLett.53.286

    Google Scholar 

  63. Grier D, Ben-Jacob E, Clarke R, Sander L (1986) Morphology and microstructure in electrochemical deposition of zinc. Phys Rev Lett 56:1264–1267. doi:10.1103/PhysRevLett.56.1264

    Google Scholar 

  64. Nikiforidis G, Cartwright R, Hodgson D, et al (2014) Factors affecting the performance of the Zn–Ce redox flow battery. Electrochim Acta 140:139–144. doi:10.1016/j.electacta.2014.04.150

    Google Scholar 

  65. López CM, Choi K-S (2006) Electrochemical synthesis of dendritic zinc films composed of systematically varying motif crystals. Langmuir: ACS J Surf Coll 22:10625–9. doi:10.1021/la0611864

    Google Scholar 

  66. Nikiforidis G, Berlouis L, Hall D, Hodgson D (2013) A study of different carbon composite materials for the negative half-cell reaction of the zinc cerium hybrid redox flow cell. Electrochim Acta 113:412–423. doi:10.1016/j.electacta.2013.09.061

    Article  Google Scholar 

  67. Sun J, Zhang F, Song J et al (2014) Electrochemical fabrication of superhydrophobic Zn surfaces. Appl Surf Sci 315:346–352. doi:10.1016/j.apsusc.2014.07.140

    Article  Google Scholar 

  68. Kim H-I, Shin H-C (2015) SnO additive for dendritic growth suppression of electrolytic zinc. J Alloy Compd 645:7–10. doi:10.1016/j.jallcom.2015.04.208

    Article  Google Scholar 

  69. Ozgit D, Hiralal P, Amaratunga GAJ (2014) Improving performance and cyclability of zinc-silver oxide batteries by using graphene as a two dimensional conductive additive. ACS Appl Mater Interfaces 6:20752–20757. doi:10.1021/am504932j

    Article  Google Scholar 

  70. Ganne F, Cachet C, Maurin G et al (2000) Impedance spectroscopy and modelling of zinc deposition in chloride electrolyte containing a commercial additive. J Appl Electrochem 30:665–673. doi:10.1023/A:1004096822969

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinath Pillai Rajarathnam .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rajarathnam, G.P., Vassallo, A.M. (2016). Zinc Electrodeposition Morphology. In: The Zinc/Bromine Flow Battery. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-287-646-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-646-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-645-4

  • Online ISBN: 978-981-287-646-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics