Skip to main content

Spatial Prediction of Flood Frequency Analysis in a Semi-Arid Zone: A Case Study from the Seyad Basin (Guelmim Region, Morocco)

  • Chapter
  • First Online:
Geospatial Technology for Landscape and Environmental Management

Abstract

Flood, a constant phenomenon especially in the semi-arid areas and flood plain regions, can be seen as one of the most destructive natural hazards jeopardizing the life of a population, their property, and their physical and economic environment. This paper focus on hydrologic modeling using the HEC-RAS model in combination with Watershed Modeling System (WMS) tools compares to the Flood Hazard Index (FHI) method using GIS in the Seyad basin situated in the southwestern region of Morocco with an area of 1512.85 km2. The goal sought in this study is to evaluate flood risk in the Seyad basin that covers the cities of Taghjijt, Aday, Amtoudi, Tagriante, and Timoulayn’Ouamalougt that are areas with important agricultural lands. The HEC-RAS approach combines the surface hydrologic model and the digital terrain model data. This combination allows the mapping of the flood zones by using the WMS tools. This approach predicts flood occurrence probability for different times and determines the intensity of the flood (depth and velocity of floodwater) by using the existing hydrological data. On the other hand, The Flood Hazard Index method presents a multi-criteria index to assess flood risk areas, using six physical parameters namely: Permeability, slope, distance from the drainage network, land use, drainage network, and flow accumulation. A weight is calculated from the analytic hierarchy process method and applies to each parameter. HEC-RAS method allows the mapping of a flood with a flood water surface profile that shows the depth of flood for Annual Exceedance Probability (AEP) while FHI permits establishing flood risk level without indicating the depth of water. In both approaches, six types of simulations were performed with the return periods of 10, 20, 50, 100, 200, and 500 years and the simulation revealed that the most susceptible areas to flooding are the area along the Seyad River.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaron C, Venkatesh M (2009) Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. J Hydrol 377(1–2):131–142

    Google Scholar 

  • Abdessamed D, Abderrazak B (2019) Coupling HEC-RAS and HEC-HMS in rainfall-runoff modeling and evaluating floodplain inundation maps in arid environments: case study of Ain Sefra city, Ksour Mountain, SW of Algeria. Environ Earth Sci 78(19):586

    Article  Google Scholar 

  • Abu El-Magd SA, Amer RA, Embaby A (2020) Multi-criteria decision-making for the analysis of flash floods: A case study of Awlad Toq-Sherq, Southeast Sohag, Egypt. J Afr Earth Sci 162:103709

    Google Scholar 

  • Aitali R, Snoussi M, Kasmi S (2020) Coastal development and risks of flooding in Morocco: the cases of Tahaddart and Saidia coasts. J Afr Earth Sci 164:103771

    Google Scholar 

  • Ajjur SB, Mogheir YK (2020) Flood hazard mapping using a multi-criteria decision analysis and GIS (case study Gaza Governorate, Palestine). Arab J Geosci 13(2):44

    Article  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrovand BN, Csaki F (eds) Proceedings of the 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp. 267–281

    Google Scholar 

  • Al-Zahrani M, Al-Areeq A, Sharif HO (2017) Estimating urban flooding potential near the outlet of an arid catchment in Saudi Arabia. Geomat Nat Haz Risk 8(2):672–688

    Article  Google Scholar 

  • Amellah O, El Morabiti K, Ouchar Al-djazouli M (2020) Spatialization and assessment of flood hazard using 1D numerical simulation in the plain of Oued Laou (north Morocco). Arab J Geosci 13(14):635

    Article  Google Scholar 

  • Anees MT, Abdullah K, Nawawi MNM, Ab Rahman NNN, Piah ARM, Zakaria NA, Syakir MI, Omar AKM (2016) Numerical modeling techniques for flood analysis. J Afr Earth Sci 124:478–486

    Google Scholar 

  • Atbir H (2014) La Feija de Bouizakarne-Guelmim: Géomorphologie et perspectives environnementales. Ph.D. dissertation, Ibn Zohr University (In French)

    Google Scholar 

  • Bedient PB, Huber WC (2002) Hydrology and floodplain analysis, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Bladé E, Cea L, Corestein G (2014) Numerical modelling of river inundations. Ingeniería Del Agua 18(1):71–82

    Google Scholar 

  • Brigham Young University (2002) WMS v7.0 Help. Environmental Modelling Research Laboratory, Provo, UT

    Google Scholar 

  • Casas A, Benito G, Thorndycraft VR, Rico M (2006) The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surf Proc Land 31(4):444–456

    Article  Google Scholar 

  • Choubert G (1963) Histoire géologique du Précambrien de l’Anti-Atlas. Notes Mém Serv Géol Maroc 162, 352 p

    Google Scholar 

  • Choubert G, Faure-Muret A (1970) Livret-guide de l’excursion: Anti-Atlas occidental et central. Notes Mém Serv Géol Maroc 299, 259 p

    Google Scholar 

  • Cong SZ, Hu SY (1989) Some problems on flood-frequency analysis. Chin J Appl Probab Statist 5:358–368

    Google Scholar 

  • Creach A, Chevillot-Miot E, Mercier D, Pourinet L (2016) Vulnerability to coastal flood hazard of residential buildings on Noirmoutier Island (France). J Maps 12(2):371–381

    Article  Google Scholar 

  • Das S (2020) Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sens Appl Soc Environ 20:100379

    Google Scholar 

  • Das S (2019) Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sens Appl Soc Environ 14:60–74

    Google Scholar 

  • Demek J (1972) Manual of detailed geomorphological mapping. Academia, Prague

    Google Scholar 

  • Di Salvo C, Ciotoli G, Pennica F, Cavinato GP (2017) Pluvial flood hazard in the city of Rome (Italy). J Maps 13(2):545–553

    Article  Google Scholar 

  • Echogdali FZ, Boutaleb S, Jauregui J, Elmouden A (2018) Cartography of flooding Hazard in semi-arid climate: the case of Tata Valley (South-East of Morocco). J Geograph Nat Disasters 8(1):1–11

    Google Scholar 

  • Echogdali FZ, Boutaleb S, Jauregui J, Elmouden A, Ouchchen M (2018) Assessing flood hazard at river basin scale with comparison between HECRAS-WMS and Flood Hazard Index (FHI) methods: the case of El Maleh Basin, Morocco. J Water Resour Prot 10(9):957–977

    Article  Google Scholar 

  • El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43(3):W03410

    Google Scholar 

  • El-Haddad BA, Youssef AM, Pourghasemi HR, Pradhan B, El-Shater AH, El-Khashab MH (2020) Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin Egypt. Nat Hazards 105(1):83–114

    Google Scholar 

  • Elkhrachy I (2015) Flash flood hazard mapping using satellite images and GIS tools: a case study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt J Remote Sens Space Sci 18(2):261–278

    Google Scholar 

  • EVICC (2011) Evaluation de la vulnérabilité et des impacts du changement climatique dans les oasis du Maroc et structuration de stratégies territoriales d’adaptation. Mission 1.1 : Bilan-Diagnostic des vulnérabilités climatiques et des capacités d’adaptation en situation actuelle. Supplementary report, October 2011 (In French)

    Google Scholar 

  • Ghosh A, Kar SK (2018) Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal India. Nat Hazards 94(1):349–368

    Google Scholar 

  • Goodell C, Warren C (2006) Flood inundation mapping using HEC-RAS. Obras y Proyectos 2:18–23

    Google Scholar 

  • Guerriero L, Focareta M, Fusco G, Rabuano R, Guadagno FM, Revellino P (2018) Flood hazard of major river segments, Benevento Province Southern Italy. J Maps 14(2):597–606

    Google Scholar 

  • Haan CT, Barfield BJ, Hayes JC (1994) Design hydrology and sedimentology for small catchments. Elsevier, New York

    Google Scholar 

  • Handfield R, Walton SV, Sroufe R, Melnyk SA (2002) Applying environmental criteria to supplier assessment: a study in the application of the analytical hierarchy process. Eur J Oper Res 141(1):70–87

    Article  MATH  Google Scholar 

  • Haque MM, Seidou O, Mohammadian A, Ba K (2021) Effect of rating curve hysteresis on flood extent simulation with a 2D hydrodynamic model: a case study of the Inner Niger Delta, Mali, West Africa. J Afr Earth Sci 178:104187

    Google Scholar 

  • Hosseini FS, Choubin B, Mosavi A, Nabipour N, Shamshirband S, Darabi H, Haghighi AT (2020) Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing features election method. Sci Total Environ 711:135161

    Google Scholar 

  • Ikirri M, Faik F, Boutaleb S, Echogdali FZ, Abioui M, Al-Ansari N (2021) Application of HEC-RAS/WMS and FHI models for the extreme hydrological events under climate change in the Ifni River arid watershed from Morocco. In: Nistor MM (ed) Climate and land use impacts on natural and artificial systems: mitigation and adaptation. Elsevier, Amsterdam, pp 251–270

    Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartograph 7:186–190

    Google Scholar 

  • Kabenge M, Elaru J, Wang H, Li F (2017) Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index. Nat Hazards 89(3):1369–1387

    Article  Google Scholar 

  • Karim F, Hasan M, Marvanek S (2017) Evaluating annual maximum and partial duration series for estimating frequency of small magnitude floods. Water 9(7):481

    Article  Google Scholar 

  • Kazakis N, Kougias I, Patsialis T (2015) Assessment of flood hazard areas at a regional scale using an index based approach and analytical hierarchy process: application in Rhodope-Evros Region, Greece. Sci Total Environ 538:555–563

    Article  Google Scholar 

  • Khalfallah CB, Saidi S (2018) Spatiotemporal floodplain mapping and prediction using HEC-RAS-GIS tools: case of the Mejerda River, Tunisia. J Afr Earth Sci 142:44–51

    Google Scholar 

  • Khattak MS, Anwar F, Saeed TU, Sharif M, Sheraz K, Ahmed A (2016) Floodplain mapping using HEC-RAS and ArcGIS: a case study of Kabul River. Arab J Sci Eng 41(4):1375–1390

    Article  Google Scholar 

  • Lyu HM, Zhou WH, Shen SL, Zhou AN (2020) Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustain Cities Soc 56:102103

    Google Scholar 

  • Mai DT, De Smedt F (2017) A combined hydrological and hydraulic model for flood prediction in Vietnam applied to the Huong river basin as a test case study. Water 9(11):879

    Article  Google Scholar 

  • Metzger A, Marra F, Smith JA, Morin E (2020) Flood frequency estimation and uncertainty in arid/semi-arid regions. J Hydrol 590:125254

    Google Scholar 

  • Morin E, Grodek T, Dahan O, Benito G, Kulls C, Jacoby Y, Langenhove GV, Seely M, Enzel Y (2009) Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb River, Namibia. J Hydrol 368(1–4):262–275

    Article  Google Scholar 

  • Morin E, Jacoby Y, Navon S, Bet-Halachmi E (2009) Towards flash-flood prediction in the dry Dead Sea region utilizing radar rainfall information. Adv Water Resour 32(7):1066–1076

    Article  Google Scholar 

  • Naiji Z, Mostafa O, Amarjouf N, Rezqi H (2021) Application of two-dimensional hydraulic modelling in flood risk mapping. A case of the urban area of Zaio, Morocco. Geocarto Int 36(2):180–196

    Google Scholar 

  • Nkwunonwo UC, Whitworth M, Baily B (2019) Urban flood modelling combining cellular automata framework with semi-implicit finite difference numerical formulation. J Afr Earth Sci 150:272–281

    Google Scholar 

  • Ouma YO, Tateishi R (2014) Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water 6(6):1515–1545

    Article  Google Scholar 

  • Pinos J, Timbe L (2019) Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Sci Eng 12(1):11–18

    Article  Google Scholar 

  • Rao AR, Hamed KH (2001) Flood frequency analysis. CRC Press, New York

    Google Scholar 

  • Rivera S, Hernandez AJ, Ramsey RD, Suarez G (2007) Predicting flood hazard areas: a SWAT and HEC-RAS simulations conducted in Aguan river basin of Honduras, central America. In: ASPRS 2007 annual conference, Tampa, Florida

    Google Scholar 

  • Saaty TL (2012) Decision making for leaders: the analytic hierarchy process for decisions in a complex world, 3rd edn. RWS Publications, Pittsburgh

    Google Scholar 

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98

    Google Scholar 

  • Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26

    Article  MATH  Google Scholar 

  • Saaty TL (1990) An exposition of the AHP in reply to the paper remarks on the analytic hierarchy process. Manage Sci 36(3):259–268

    Article  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process. McGraw-Hill, New York

    MATH  Google Scholar 

  • Saaty TL (1977) A Scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281

    Article  MathSciNet  MATH  Google Scholar 

  • Schmitt TG, Thomas M, Ettrich N (2004) Analysis and modeling of flooding in urban drainage systems. J Hydrol 299(3–4):300–311

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Singh V, Frevert D (2006) Watershed models. Taylor & Francis, London

    Google Scholar 

  • Souissi D, Zouhri L, Hammami S, Msaddek MH, Zghibi A, Dlala M (2020) GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int 35(9):991–1017

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79

    Article  Google Scholar 

  • Theilen-Willige B, Charif A, Ouahidi AE, Chaibi M, Ougougdal MA, AitMalek H (2015) Flash floods in the Guelmim area/southwest Morocco–use of remote sensing and GIS-tools for the detection of flooding-prone areas. Geosciences 5(2):203–221

    Article  Google Scholar 

  • Tramblay Y, St-Hilaire A, Ouarda TB (2008) Frequency analysis of maximum annual suspended sediment concentrations in North America. Hydrol Sci J 53(1):236–252

    Article  Google Scholar 

  • WMS (Watershed Modelling System) (2018) Reference manual, user manual (v10.1). Environmental Modeling Research Laboratory of Brigham Young University, Provo, UT

    Google Scholar 

  • Yazidi A (1976) Les formations sédimentaires et volcaniques de la boutonnière d’Ifni (Maroc): Lithostratigraphie et chronologie du Précambrien supérieur. Ph.D dissertation, Grenoble Alpes University (In French)

    Google Scholar 

  • Zurich and Targa-AIDE (2015) Inondations au Maroc en 2014: Quels enseignements tirer de Guelmim et Sidi Ifni? Report, 40p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abioui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Echogdali, F.Z. et al. (2022). Spatial Prediction of Flood Frequency Analysis in a Semi-Arid Zone: A Case Study from the Seyad Basin (Guelmim Region, Morocco). In: Rai, P.K., Mishra, V.N., Singh, P. (eds) Geospatial Technology for Landscape and Environmental Management. Advances in Geographical and Environmental Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-16-7373-3_3

Download citation

Publish with us

Policies and ethics