Skip to main content

Sequential Anaerobic/Aerobic Methods in Dye Elimination

  • Chapter
  • First Online:
Advanced Removal Techniques for Dye-containing Wastewaters

Abstract

Almost all the modern dyes widely used in industrial processes like textile, leather, paint, food, cosmetic, and pharmaceutical manufacturing are synthetic organic compounds. Dyes are responsible for the dyeing phase of the product of interest, and it has been estimated that the annual synthetic organic dye production exceeds 700,000 tons globally. Dyes can be categorized based on their structure and application: reactive, acid, disperse, vat, and azo dyes are some of those classes. The discharge of these dyes into the environment is a major threat due to the adverse effects such as carcinogenicity, toxicity, and mutagenicity of themselves and their biological transformation products. Therefore, the elimination of dyes from wastewater is a major requirement today, and various types of treatments are available in the world. Some of those methods are physical processes like adsorption and membrane filtration, and chemical processes like coagulation–flocculation and ozonation. The application of these methods has some restrictions such as effectiveness of the dye removal process, need for expensive chemicals/reagents, etc. Yet, the biological processes may exhibit better effectiveness and only require relatively cheaper, environmentally friendly reagents. Azo dyes can be considered as a representative class of dyes for the treatment with biological processes under aerobic and anaerobic conditions. The biodegradation of azo dyes is occurring via two steps; first, the reduction of the azo linkage (favorable under anaerobic conditions) to produce colorless amines and subsequently, further degradation of aromatic amines (favorable in aerobic conditions). The fate of the dyes upon treating with biological processes may vary based on the structure of the organic moiety and the conditions used. Such cases are discussed in this chapter in great detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albuquerque MGE, Lopes AT, Serralheiro ML, Novais JM, Pinheiro HM (2005) Biological sulphate reduction and redox mediator effects on azo dye decolourisation in anaerobic-aerobic sequencing batch reactors. Enzyme Microbial Technol 36:790–799. https://doi.org/10.1016/j.enzmictec.2005.01.005

    Article  CAS  Google Scholar 

  2. Banerjee P, Dasgupta S, De S (2007) Removal of dye from aqueous solution using a combination of advanced oxidation process and nanofiltration. J Hazard Mater 140:95–103. https://doi.org/10.1016/j.jhazmat.2006.06.075

    Article  CAS  Google Scholar 

  3. Benkhaya S, M’ Rabet S, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chem Commun 115:107891. https://doi.org/10.1016/j.inoche.2020.107891

    Google Scholar 

  4. Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Biological methods for textile dye removal from wastewater: a review. Critical Rev Environ Sci Technol 47:1836–1876. https://doi.org/10.1080/10643389.2017.1393263

    Article  CAS  Google Scholar 

  5. Bonakdarpour B, Vyrides I, Stuckey DC (2011) Comparison of the performance of one stage and two stage sequential anaerobic e aerobic biological processes for the treatment of reactive-azo-dye-containing synthetic wastewaters. Int Biodeterior Biodegrad 65:591–599. https://doi.org/10.1016/j.ibiod.2011.03.002

    Article  CAS  Google Scholar 

  6. Carliel C, Barclay S, Naidoo N, Buckley C, Mulholland D, Senior E (1994) Anaerobic decolorisation of reactive dyes in conventional sewage treatment processes. Water SA 20:341–344

    Google Scholar 

  7. Carliell C, Barclay S, Naidoo N, Buckley C, Mulholland D, Senior E (1995) Microbial decolourisation of a reactive azo dye under anaerobic conditions. Water SA 21:61–69

    CAS  Google Scholar 

  8. Carvalho M, Pereira C, Goncalves I, Pinheiro H, Santos A, Lopes A, Ferra M (2008) Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines. Int Biodeterior Biodegrad 62:96–103. https://doi.org/10.1016/j.ibiod.2007.12.008

    Article  CAS  Google Scholar 

  9. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265:159–168. https://doi.org/10.1016/j.desal.2010.07.047

    Article  CAS  Google Scholar 

  10. Cui D, Zhang H, He R, Zhao M (2016) The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by anaerobic sludge. Int J Environ Res Pub Health 13:1053. https://doi.org/10.3390/ijerph13111053

    Article  CAS  Google Scholar 

  11. Dafale N, Wate S, Meshram S, Neti NR (2010) Bioremediation of wastewater containing azo dyes through sequential anaerobic-aerobic bioreactor system and its biodiversity. Environ Rev 18:21–36. https://doi.org/10.1139/a10-001

    Article  CAS  Google Scholar 

  12. Ekici P, Leupold G, Parlar H (2001) Degradability of selected azo dye metabolites in activated sludge systems. Chemosphere 44:721–728. https://doi.org/10.1016/S0045-6535(00)00345-3

    Article  CAS  Google Scholar 

  13. Erick M, Igor P, Firmino M (2012) Sequential anaerobic/aerobic treatment of dye-containing wastewaters: colour and COD removals, and ecotoxicity tests 1057–1069. https://doi.org/10.1007/s12010-011-9493-7

  14. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971. https://doi.org/10.1016/j.envint.2004.02.001

    Article  CAS  Google Scholar 

  15. Forss J, Welander U (2011) Biodegradation of azo and anthraquinone dyes in continuous systems. Int Biodeterior Biodegrad 65:227–237. https://doi.org/10.1016/j.ibiod.2010.11.006

    Article  CAS  Google Scholar 

  16. Frijters C, Vos R, Scheffer G, Mulder R (2006) Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. Water Res 40:1249–1257. https://doi.org/10.1016/j.watres.2006.01.013

    Article  CAS  Google Scholar 

  17. Garcia-Montano J, Ruiz N, Munoz I, Domenech X, Garcia-Hortal JA, Torrades F, Peral J (2006) Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal. J Hazard Mater 138:218–25. https://doi.org/10.1016/j.jhazmat.2006.05.061

    Article  CAS  Google Scholar 

  18. Gičević A, Hindija L, Karačić A (2020) Toxicity of azo dyes in pharmaceutical industry 73:581–587. https://doi.org/10.1007/978-3-030-17971-7_88

    Article  Google Scholar 

  19. Harrelkas F, Paulo A, Alves MM, El Khadir L, Zahraa O, Pons MN, Van Der Zee FP (2008) Photocatalytic and combined anaerobic-photocatalytic treatment of textile dyes. Chemosphere 72:1816–1822. https://doi.org/10.1016/j.chemosphere.2008.05.026

    Article  CAS  Google Scholar 

  20. Haug W, Schmidt A, Nörtemann B, Hempel D, Stolz A, Knackmuss H (1991) Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl Environ Microbiol 57:3144–3149

    Article  CAS  Google Scholar 

  21. Hunger K (2007) Industrial dyes: chemistry, properties, applications. Wiley

    Google Scholar 

  22. Igor P, Firmino M, Erick M, Silva R, Cervantes FJ, André B (2010) Bioresource technology colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Biores Technol 101:7773–7779. https://doi.org/10.1016/j.biortech.2010.05.050

    Article  CAS  Google Scholar 

  23. Işik M, Sponza DT (2004) Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions. J Environ Sci Health Part A Toxic/Hazard Substances Environ Eng 39:1107–1127. https://doi.org/10.1081/ese-120028417

    Article  Google Scholar 

  24. Işik M, Sponza DT (2004) Monitoring of toxicity and intermediates of C.I. Direct Black 38 azo dye through decolorization in an anaerobic/aerobic sequential reactor system. J Hazard Mater 114:29–39. https://doi.org/10.1016/j.jhazmat.2004.06.011

    Article  CAS  Google Scholar 

  25. Işik M, Sponza DT (2008) Anaerobic/aerobic treatment of a simulated textile wastewater. Sep Purif Technol 60:64–72. https://doi.org/10.1016/j.seppur.2007.07.043

    Article  CAS  Google Scholar 

  26. Jonstrup M, Kumar N, Murto M, Mattiasson B (2011) Sequential anaerobic–aerobic treatment of azo dyes: decolourisation and amine degradability. Desalination 280:339–346. https://doi.org/10.1016/j.desal.2011.07.022

    Article  CAS  Google Scholar 

  27. Kandelbauer A, Guebitz G (2005) Bioremediation for the decolorization of textile dyes—a review. In: Environmental chemistry. Springer

    Google Scholar 

  28. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6:4676–4697. https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  29. Khan R, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12:75–97. https://doi.org/10.1007/s11157-012-9287-6

    Article  CAS  Google Scholar 

  30. Kudlich M, Hetheridge MJ (1999) Autoxidation reactions of different aromatic o -aminohydroxynaphthalenes that are formed during the anaerobic reduction of sulfonated azo dyes 33:896–901

    CAS  Google Scholar 

  31. Li H-H, Wang Y-T, Wang Y, Wang H-X, Sun K-K, Lu Z-M (2019) Bacterial degradation of anthraquinone dyes. J Zhejiang Univ Sci B 20:528–540. https://doi.org/10.1631/jzus.B1900165

    Article  Google Scholar 

  32. Lourenço ND, Novais JM, Pinheiro HM (2001) Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J Biotechnol 89:163–174. https://doi.org/10.1016/s0168-1656(01)00313-3

    Article  Google Scholar 

  33. Luangdilok W, Panswad T (2000) Effect of chemical structures of reactive dyes on color removal by an anaerobic-aerobic process. Water Sci Technol 42:377–382. https://doi.org/10.2166/wst.2000.0406

    Article  CAS  Google Scholar 

  34. Mishra S, Maiti A (2018) The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. Environ Sci Pollut Res 25:8286–8314. https://doi.org/10.1007/s11356-018-1273-2

    Article  CAS  Google Scholar 

  35. Mondal S (2008) Methods of dye removal from dye house effluent—an overview. Environ Eng Sci 25:383–396. https://doi.org/10.1089/ees.2007.0049

    Article  CAS  Google Scholar 

  36. Moosvi S, Kher X, Madamwar D (2007) Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigm 74:723–729. https://doi.org/10.1016/j.dyepig.2006.05.005

    Article  CAS  Google Scholar 

  37. Muda K, Aris A, Salim MR, Ibrahim Z, Van Loosdrecht MCM, Ahmad A, Nawahwi MZ (2011) The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater. Water Res 45:4711–4721. https://doi.org/10.1016/j.watres.2011.05.012

    Article  CAS  Google Scholar 

  38. Nicholson SK, John P (2004) Bacterial indigo reduction. Biocatal Biotransform 22:397–400

    Article  CAS  Google Scholar 

  39. Nigam P, Banat IM, Singh D, Marchant R (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 31:435–442

    Article  CAS  Google Scholar 

  40. Ogola HJO, Ashida H, Ishikawa T, Sawa Y (2015) Explorations and applications of enzyme-linked bioremediation of synthetic dyes. Adv Bioremed Wastewater Polluted Soil, 111–144

    Google Scholar 

  41. Öğütveren ÜB, Koparal S (1994) Color removal from textile effluents by electrochemical destruction. J Environ Sci Health Part A Environ Sci Eng Toxicol 29:1–16. https://doi.org/10.1080/10934529409376018

    Article  Google Scholar 

  42. Ong SA, Toorisaka E, Hirata M, Hano T (2005) Decolorization of azo dye (Orange II) in a sequential UASB-SBR system. Sep Purif Technol 42:297–302. https://doi.org/10.1016/j.seppur.2004.09.004

    Article  CAS  Google Scholar 

  43. Ozdemir S, Cirik K, Akman D, Sahinkaya E, Cinar O (2013) Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Biores Technol 146:135–143. https://doi.org/10.1016/j.biortech.2013.07.066

    Article  CAS  Google Scholar 

  44. Padden AN, Dillon VM, John P, Edmonds J, Collins MD, Alvarez N (1998) Clostridium used in mediaeval dyeing. Nature 396:225–225

    Article  CAS  Google Scholar 

  45. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84

    Article  CAS  Google Scholar 

  46. Pereira L, Alves M (2012) Dyes—environmental impact and remediation, 111–162. https://doi.org/10.1007/978-94-007-1591-2_4

  47. Pereira L, Mondal PK, Alves M (2015) Aromatic amines sources, environmental impact and remediation. In: Pollutants in buildings, water and living organisms. Springer

    Google Scholar 

  48. Popli S, Patel UD (2015) Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int J Environ Sci Technol 12:405–420

    Article  CAS  Google Scholar 

  49. Rauf MA, Ashraf SS (2012) Survey of recent trends in biochemically assisted degradation of dyes. Chem Eng J 209:520–530

    Article  CAS  Google Scholar 

  50. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Instit Chem Eng 42:138–157. https://doi.org/10.1016/j.jtice.2010.06.006

    Article  CAS  Google Scholar 

  51. Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Critical Rev Environ Sci Technol 41:807–878. https://doi.org/10.1080/10643380903218376

    Article  CAS  Google Scholar 

  52. Singh P, Sanghi R, Pandey A, Iyengar L (2007) Decolorization and partial degradation of monoazo dyes in sequential fixed-film anaerobic batch reactor (SFABR). Biores Technol 98:2053–2056. https://doi.org/10.1016/j.biortech.2006.08.004

    Article  CAS  Google Scholar 

  53. Singh SN (2014) Microbial degradation of synthetic dyes in wastewaters. Springer

    Google Scholar 

  54. Supaka N, Juntongjin K, Damronglerd S, Delia M-L, Strehaiano P (2004) Microbial decolorization of reactive azo dyes in a sequential anaerobic—aerobic system 99:169–176. https://doi.org/10.1016/j.cej.2003.09.010

  55. Tan N (2001) Integrated and sequential anaerobic/aerobic biodegradation of azo dyes

    Google Scholar 

  56. Tan NC, Van Leeuwen A, Van Voorthuizen EM, Slenders P, Prenafeta-Boldu FX, Temmink H, Lettinga G, Field JA (2005) Fate and biodegradability of sulfonated aromatic amines. Biodegradation 16:527–537

    Article  CAS  Google Scholar 

  57. Ulson SMDaG, Bonilla KaS, De Souza AaU (2010) Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J Hazard Mater 179:35–42

    Google Scholar 

  58. Van Der Zee FP, Bisschops IA, Blanchard VG, Bouwman RH, Lettinga G, Field JA (2003) The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge. Water Res 37:3098–3109

    Article  Google Scholar 

  59. Van Der Zee FP, Lettinga G, Field JA (2001) Azo dye decolourisation by anaerobic granular sludge. Chemosphere 44:1169–1176

    Article  Google Scholar 

  60. Van Der Zee FP, Villaverde S (2005) Combined anaerobic–aerobic treatment of azo dyes—a short review of bioreactor studies. Water Res 39:1425–1440. https://doi.org/10.1016/j.watres.2005.03.007

    Article  CAS  Google Scholar 

  61. Walker R, Ryan A (1971) Some molecular parameters influencing rate of reduction of azo compounds by intestinal microflora. Xenobiotica 1:483–486. https://doi.org/10.3109/00498257109041513

  62. Yamjala K, Nainar MS, Ramisetti NR (2016) Methods for the analysis of azo dyes employed in food industry—a review. Food Chem 192:813–824

    Article  CAS  Google Scholar 

  63. Zimmermann T, Kulla HG, Leisinger T (1982) Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura; Instrument Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura; and Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janitha Walpita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weerasinghe, K., De Silva, S.M., Abeyrathna, H., Cooray, A.T., Walpita, J. (2021). Sequential Anaerobic/Aerobic Methods in Dye Elimination. In: Muthu, S.S., Khadir, A. (eds) Advanced Removal Techniques for Dye-containing Wastewaters. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-3164-1_9

Download citation

Publish with us

Policies and ethics